Covers:
JavaScript « XML « DHTML « CSS »
AMLHttpRequest objects « PHP

Steven
Holzner

Ajax
A Beginner's Guide

http://dx.doi.org/10.1036/0071494294

About the Author

Steven Holzner is an award-winning computer book author
and web entrepreneur, with over 100 published books in

18 languages, with over 3 million copies sold. He’s written
extensively on Ajax, and uses it daily on his web sites. He’s also
been on the faculty of both Cornell University and MIT.

About the Technical Editor

Jim Keogh introduced PC programming nationally in his
Popular Electronics Magazine column in 1982, and was

a member of a team who built one of the first Windows
applications by a Wall Street firm, featured by Bill Gates in
1986. He has spent almost two decades developing computer
systems for Wall Street firms such as Salomon, Inc. and Bear
Stearns, Inc. Keogh is presently on the faculty of New York
University, and is the author of J2EE: The Complete Reference
and J2ME: The Complete Reference, both published by
McGraw-Hill, and more than 55 other titles.

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

Ajax
A Beginner's Guide

Steven Holzner

G

New York Chicago San Francisco
Lisbon London Madrid Mexico City
Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

http://dx.doi.org/10.1036/0071494294

The McGraw-Hill Companies

Copyright © 2009 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United States of America. Except as permit-
ted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any
means, or stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-159531-7
The material in this eBook also appears in the print version of this title: 0-07-149429-4.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked
name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the
trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training
programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212) 904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill””) and its licensors reserve all rights in and to the work.
Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy
of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon,
transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use
the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may
be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS 1S.” McCGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO
THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUD-
ING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND
EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not war-
rant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error
free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause,
in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through
the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive,
consequential or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the
possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in
contract, tort or otherwise.

DOI: 10.1036/0071494294

http://dx.doi.org/10.1036/0071494294

To Nancy

This page intentionally left blank

O 0 N O U b W N =—

e —
N = O

Contents at a Glance

Essential AJaX ..vvviuieieieieiiieieiieretitetetetececesssncasasscssassssnes 1
Getting to Know JavaScriptcoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieene, 15
Creating Ajax Applicationsc.cicieieiiiiiiiieiererereresnsececncncnes 59
Full Throttle AjJax ...cciviiiiiiiiiiiiiriiiierereresecesesncnsssssasassssses 103
Using Ajax Frameworkscccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiennennn. 147
Handling XML iN AJaX ..oeieieieieieereteteteseresesssscscscssssssssssasss 183
Working with Cascading Style Sheets with Ajaxcccvevvvviiinnen.. 227
Handling Dynamic HTML with Ajaxcciiiiiiiiinierecesesesesesenenes 267
Introducing PHP with Ajaxcociiiiiiiiiiiiiiiieiitcncncacecnsacasanss 305
PHPin Depth ..cuivniiiiiiiiiiiiiiiiii ittt ittt iii it iiceeeaeeas 343
Validating User Input with Ajax and PHPcooiiiiiiiiiiiatn. 383
Using the HTML DOM and AJAXcoiiieieierececececscncscscssssssanss 423
1T 461

This page intentionally left blank

For more information about this title, click here

Contents

INTRODUCTION e XV
Essential Ajax ..ocoiviiieiienieanenns 1
What I8 AJax? o 5
An Example: Ajax-driven Tom Riddle’s Diary ..., 7
Try This: Tom Riddle’s Diary ..o e 8
Updating Web Page Text with Ajax —.......oooiiiiiiii i 9
Chatting in Real Time with Ajax ... i e 10
Dragging and Dropping with Ajax ..o 11
Downloading Images with Ajax (and Dynamic HTML) 12
Getting to Know JavaScriptcooeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiie. 15
Try This: Test ajax.html ... 17
Introducing JavaScript ... o 19
Getting Started with JavaScript ... 20
Try This: Get javascripthtml to Work 22
Adding Comments to Your Code ioiiiiiii e 23
Using External JavaScript Files ... 24
Handling Events in the Browser —.......... ... i 25
Try This: Get click.html to Work ... o 28
Working with JavaScript Functions 28
Passing Data to Functions — oo 33

http://dx.doi.org/10.1036/0071494294

X Ajax: A Beginner's Guide

Try This: Pass Data to Functions — 36
Returning Data from Functions i 38
Try This: Return Data from Functions — i 39
Working with Variables ... 40
Putting It All Together with Operators —............ooiininiriin i eeaenen. 42
Grooving with the if Statement 46
Try This: Test the if Statement i e 48
Using the else Statement onin ittt e 48
Try This: Test the else Statement i 49
Working with the Logical Operators —ouiuiiiiii i 49
Try This: Test the Or Operatorooniiiiniii i 50
Over and Over with the for Loop i 51
Try This: Test the for Loop ..ot e 52
Keep on Looping with the while Loop i 53
Which Browser Does the User Have? i 56
Try This: Use browser.html 58
3 Creating Ajax Applicationscccceiiiiiiiiiiiiiiiiiiiiieiieeniiennnens 59
Try This: Get ajax.html to Work ... o 62
Taking ajax.html Apart 63
Creating the JavaScripto.iin i 64
Creating the XMLHttpRequest Object ...ttt 66
Opening the XMLHttpRequest Object o.iiuiiiiiii i 70
Getting Ready for the Data Download o 73
Using the readyState Property oouiiiiiiiii i 76
Using the status Property ouiiniii e 77
Displaying the Fetched Data i i e 77
Connecting to the SEIVETo.it it e 78
Adding Some Server-Side Programming —o 79
Try This: Get ajax2.html to Work ... o 82
Sending Data to the Server Using GET 82
Sending Data with URL Encoding ..., 83
Writing the PHP ..o 84
Interacting with dataresponder.php i 85
Sending Data to the Server Using POST i 88
Writing the PHP ..o 88
Interacting with dataresponderpost.php ooiiiiiiiiiiiiii i 89
Using Ajax Together with XML ... e 94
4 Full Throttle AJaX ...ciieeerineesieeestnosssossssssssssssssssssssssssnsssss 103
Handling Multiple XMLHttpRequest Objects in the Same Page 104
Using Two XMLHttpRequest Objects ouiiuiitii i 107
Try This: Get double.html to Work 111
Using an Array of XMLHttpRequest Objects c.viiiiiiiiiiiiiii .., 111

Try This: Get array.html to Work o 116

Contents

Using Inner Functions ... i e 116
Try This: Get Inner Functions to Work i 121
Downloading JavaScript ...t 122
Try This: Download JavaScript ... 126
Connecting to Google SUZZESt ...t 126

Creating the Search Term Field i, 127

Writing the JavaScript ... 128

Displaying the Matches ... o i 134
Creating google.php ..o 138
Downloading from Other Domains with Ajax —o, 141
Try This: Contact Another Server Using AjaX —........ooiuiiiiiiiiiiiiiiiianenen. 141
Getting More Info: HTML Header Requests and Ajax —cooiiiiiininininnn.. 142
Try This: Get a Specific HTML Header ... 144
Defeating Caching o.iiiii e 145
Using Ajax Frameworkscccoiiiiiiiiiiiiiiiiiiiiiiiiiiiieeiiennnens 147
Creating ajaxframework.js ... o 148
Downloading Text with the downloadText Functiono..oo .. 149
Try This: Get downloadText.html to Work i, 157
Downloading XML with the downloadXml Function 157
Try This: Get downloadXml.html to Work i, 164
Posting Data and Downloading Text with the postDataDownloadText Function 164
Posting Data and Downloading XML with the postDataDownloadXml Function 170
Using the libXmlIRequest JavaScript Ajax Frameworko . 176
Using the AJAXLib JavaScript Ajax Framework — 179
Handling XML in AJaX ..cviiiieieieietetrececesssscscssssassssssssssssses 183
Building Some XML ..o 184
Working with XML in JavaScript —couiiuiiiii e 191
Getting the Document Element o i 193
Try This: Get the Number of Children of the Document Element 198
Accessing Any XML Element oouiiiiiiiii i 199
Try This: Find the Second Guest ... i e 207
Handling Whitespace in Firefox i 208
Handling Cross-Browser Whitespace —ot 210
Accessing XML Data Directly oooiii 216
Validating Your XMLo 222
Working with Cascading Style Sheets with Ajaxccooiiaiiaen. 227
Drawing the User’s Attention to Downloaded Text ...t 228
Styling Text Using CSS oo e 235
Try This: Change the Size of Text ... e 240
Styling Colors and Backgrounds Using CSS i 241
Try This: Use Preassigned Colors ... i 245
Setting Element Location in Web Pages o i 245

xi

xii Ajox: A Beginner's Guide

10

Try This: Adding an Additional Button —.......... i
Setting the Stacking Order of Web Page Elements ...t
A Complete Ajax CSS Example: menus.html i

Handling Dynamic HTML with Ajax ...cccoiiiiiiiiiiiiiiiiiiiiiiiennnn.

Updating Pages with Dynamic HTML Methods ...,
Updating Pages with Dynamic HTML Propertiescooiiiiiiiininn...
Using Text Ranges in Internet Explorer i,
Creating New HTML Elements with createElement
Editing Tables On-the-Flyo e
Try This: Remove Table Rows On-the-Fly i,
Using document.write to Write Documents to the Browser —

Introducing PHP with AjJax ...ccciiiiiiiiiiiiiniiincncesecasesesesesnsnses

Getting Started with PHP ...
Returning Text to the Browser o
Try This: Send HTML to the Browser —.......... ...t
Returning XML to the Browser —o.iiuiiiii e
Adding Comments to Your PHP Code i,
Storing Data in Variables ...

Storing Numbers in Variables ...

Storing Text Strings in Variables —
Interpolating Variables into Text Strings —oouiiniiiiiiii e,
Handling Data in PHP Arrays —oioi e
Handling Data with Operators —c.iiuiiniinii e
Branching with the if Statement —.......
Using for Loops in PHP ... o
Looping with the while Loop i
Try This: Display a Message Multiple Times —cooiiiiiiiiiiiiiiinann ..
Looping with the do...while Loop ... o i
Looping with the foreach Loop ..o

PHPin Depth ...viviiiiiiiiiiiiiiiiiiiiiiiietetetececscscscscssssasasasasss

Introducing PHP Functions o e
Passing Data to Functions in PHP
Try This: Pass Multiple Items to a Function
Creating Default Arguments in Functions —o it
Returning Data from Functions i
Working with HTML Controls in PHP
Using Text Fields ... oo
Using CheckbOXeS ..ot e
Using Radio Buttons ... o
Using List BOXES .ot
Using Image Maps

11

12

Contents
Validating User Input with Ajax and PHPc.cooiiiiiiiiiiiaa.e. 383
Displaying All the Datain an HTML Form o i, 385
Creating the HTML ... o e 385
Creating the PHP ... o 387
Working with PHP Server Variables —.......... ... 392
Creating the HTML ... o e 394
Creating the PHP 395
Getting Your Data in Array Format —........ ... i 399
Creating the HTML ... o e 399
Creating the PHP ... o 401
Wrapping Applications into a Single PHP Page, 403
Validating Input from the User ... 407
Validating INteZersouit ittt 418
Validating TeXt ..o e 420
Using the HTML DOM and Ajax ...cooeiiiiiieienierieeneeneeniennsenenns 423
Getting to Know the DOM ... 425
Appending New Elements to a Web Page Using the DOM and Ajax 427
Replacing Elements Using the DOM i 435
Handling TImeouts in AJaX —oouiinii e 448
Downloading Images with Ajax ... i 456
INdeX iieiiiiiiii it it it i ittt it 461

xiii

This page intentionally left blank

Introduction

This book is dedicated to making web applications look and act like desktop applications
that run on your computer. As we advance into the Internet Age, the difference between
the desktop and the Internet is going to keep diminishing. One issue that up until now has
divided desktop applications from browser-based applications is that in the browser, you
usually have to wait for the whole page to refresh before you see any results. Want to buy a
book online? Click the book and —flash— the shopping cart page appears. Want to check out?
Click the checkout button and —flash— that page appears. Then it’s on to —flash— the credit card
information page.

All that flashing gives online applications a very different feel from that of applications
on your computer. The idea behind Ajax is to get rid of all the flashing page refreshes that
plague the online experience. With Ajax, you can connect to a web server behind the scenes,
download data, and then display that data in the current page in a browser, all without
refreshing the page.

That’s the future of web development—creating a browsing experience that is no
different from using a program on your own computer. Ajax enables you create that browsing
experience.

This book gives you a complete introduction to Ajax—everything you need to know is
here. We’ll start with an overview of what Ajax can do, and how it’s being used today. Then,
you’ll get an introduction to JavaScript, which is the foundation of Ajax on the browser side
of the equation (later on, you’ll see the web server side). After you have JavaScript under your
belt, we’ll dig into Ajax itself, showing you how to create Ajax-enabled applications. We’ll
also take a look at some special problems, such as how to keep two Ajax requests to the server
from getting confused with each other.

XV

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

XVi Ajax: A Beginner's Guide

There is even an easy way to create Ajax applications, in case you’re utterly adverse to
programming, and that’s to use a package of prewritten code, called an Ajax framework, to do
the programming for you. You’ll see how to use some popular—and free—Ajax frameworks to
make everything very easy to put together.

Often, the data you read from the server using Ajax is in XML form (it doesn’t have to
be—it can be simple text), so we’re going to spend some time working with XML in the
browser, seeing how to decode the XML that was downloaded from the server.

Another big part of Ajax involves updating web pages with the data you download behind
the scenes unobtrusively, and we’ll take a look at how to do that with dynamic HTML and
Cascading Style Sheets (CSS).

In addition, we’ll look at how to support Ajax on web servers. You can download static
data files using Ajax, but that’s not very exciting. Ajax usually involves some programming on
the server, and the scripting language PHP is the language most commonly used on the server
with Ajax, so you’ll be introduced to PHP. You can send commands and data to the server
using Ajax and, with PHP on the server, customize the data you send back to the browser.

All this and more is coming up in this book as you get a complete tour of the Ajax world.

Conventions Used in This Book

This book uses a number of conventions. For example, when a term is first introduced, it’1l be
shown in italics. When a new section of code is introduced, it’ll appear in bold, such as this
<div> HTML element:

<body>

<hl>Appending Elements With the DOM and Ajax</hl>

<form>
<input type = "button" value = "Download the message"
onclick = "getData()">
</form>

<div id="targetDiv" width =100 height=100>
<p id="text"></p>
</div>

</body>

You’ll also find “Try This” elements, which invite you to give applications a try yourself,
and “Ask the Expert” sections, which give you a little more techie insight into Ajax.

What You Need

To read this book, you should have a good knowledge of HTML. You don’t have to be an
HTML rock star, but you should know enough to put together a basic web page. If the level
of HTML taken for granted in this book leaves you feeling lost, take a look at a good
introductory HTML book before proceeding.

Introduction

As far as the software side is concerned, you need a browser that can run JavaScript, such
as Internet Explorer or Firefox. Ajax revolves around browsers, so you need to have access to
an Internet browser to use this book profitably and follow along with the examples.

It’s not totally necessary to do any server-side programming in this book, so you won’t
need to understand PHP as it’s introduced in this book. However, I do recommend that you
work with an Internet service provider (ISP) that will let you support PHP scripts online. If you
don’t do any server-side programming, your Ajax experience will be extremely limited and
only let you download preexisting files from the server. When you use PHP on the server, you
can send data from the browser to the server (for example, the ZIP code in which a prospective
buyer is looking for houses) and use that data to tailor the response that you send back to the
browser for display.

And that’s all you need. Proceed to Chapter 1, which gives you a good overview of what
Ajax has to offer.

xvii

This page intentionally left blank

Chapter 1

Essential Ajax

2 Ajax: A Beginner's Guide

Key Skills & Concepts

Introducing Ajax
Live searches
Auto-complete
Drag and drop

Ajax chat programs

Open your web browser, go to Google, www.google.com, type “Ajax” in the search text
field, as shown in Figure 1-1, and click the Google Search button.

So what happens? The browser flickers and its display is refreshed, and you see the

matches to your search term (according to Google, at the time of this writing, there are a
healthy 66,700,000 matches), as shown in Figure 1-2.

‘A Google - Microsoft Internet Explorer

File Edit View Favorites Tools Help .wt.'
Qbxk - & - [F @ .;b D search <7 Favorites 42 - = W_ﬂ LB 93
Address @ hitkp: f v, google . com/ V| Go Links **

Web Images Maps MNews Shopping Gmail more «

oogle

[Ajax] | Aduanced Seaten

iGoogle | Sign in

[Google Search || 'm Feeling Lucky] Language Tools

Make Google Your Homepagel
Advertising Programs - Business Solutions - About Google

@008 Google

@ o Inkernet

Figure 1-1 Searching for “Ajax” in Google

www.google.com

Chapter 1: Essential Ajax 3

& | Ajax - Google Search - Microsoft Internet Explorer

File Edit View Favorites Tools Help lt-'
Qiack ~ O - ¥ A (| Poearch rFavartes 8 | D- & W - L @& @ 3
Address @ httpe e, google, comysearch?hl=en@n=Ajax&btnG=Google+Search v| Go Links **
Web Images Maps PMNews Shopping Gmail more « Sign in g
‘ Oogle i |Ajax | [Search] ;:d\ranced Search
Web Mews “ideo Code Books Groups Results 1 - 100 of about 66,700,000 for Ajax [definition]. (0.17 seconds)
Ajax (programming) - Wikipedia, the free encyclopedia Sponsored Links
AJAX (Asynchronous JavaScript and XML), or Ajax, is a group of inter-related wehb . y
development techniques used for creating interactive web applications. ... Visual Ajax Development
en.wikipedia. orgfwiki/AJAX - 54k - Cached - Similar pages YWavelaker - Drag & Drop
development of Dojo applications
Ajax (mythology] - Wikipedia, the free encyclopedia weerw Waveldaker.com
Ajax or Aias (ancient Greek: ADag) was a mythological Greek hero, the son of
Telamon and Periboea and king of Salamis. He plays an important role in Advanced AJAX Developer?
Homer's ... Try Adobe AR to Create Advanced
en.wikipedia. orgfwiki/Ajax_(mythology) - 51k - Cached - Similar pages YWeh Apps for your Sites. More Herel
Mare results from en.wikipedia.org » wnwy. Adobe.com
AJAX : The Official Microsoft ASP.MNET Site Open Source Ajax Toolkit
Provides the implementation of AJAX technoloav introduced by Microsoft. Build & Denlow Rich Aiax Aons With ™)
@ % o Internet

Figure 1-2 Google responds with search matches.

It’s pretty clear you’re working in a browser here—the display flickers as the browser
downloads data from the Internet and shows you that data. In fact, the entire browser window
flashed as it was updated, because the browser needed to download data from the Google
web site.

What would it be like to have all of Google on your home computer, letting you avoid that
flickering as the data was downloaded? In other words, what would it be like if Google were a
desktop application instead of an Internet application?

You can get an idea how that would work by taking a look at Google Suggest, at www
.google.com/webhp?complete=1&hl=en, which appears in Figure 1-3.

Now enter “Ajax” in the search text field. As you see in Figure 1-4, Google Suggest pops a
drop-down list onto the screen, showing you matches to your search term in real time.

There was no flash, no flicker. Google Suggest just displayed the matches it found to the
term you typed in. As you can see in Figure 1-4, Google Suggest doesn’t just display the terms
matching what you’ve entered—it also indicates the number of matches it has for each search
term. No flash, no flicker, no screen update. Cool.

When you select a term from the drop-down list, the browser navigates to Google and
looks up that term for you, displaying all the matches it found. Note that this time there was
a page refresh in the browser, and its display flickered, because Ajax wasn’t used when the
browser navigated to Google.

www.google.com/webhp?complete=1&hl=en
www.google.com/webhp?complete=1&hl=en

4

Ajax: A Beginner's Guide

A Googlo - Microsoft Intarnat Explorar

File Edil View Fawuriles Tuwls Help

Qe - O - RE G Pseach Srrwvntes @3- % W-UE D3

a

| Advanced Search

I Google Search][I'm Feeling Lucky] Language Tools

As you type, Google will offer suggestions. Use the arrow keys to navigate the results. Learn more

Iviake Google Your Homepage!
Feedback - Discuss - Terms of Use - FAQ

Address @ httpe: v gnngle.comfrehhp?rnmplete=18hl=sn w | Go Links ®
Web |mages Maps News Shopping Gmail more « iGoogle | Sign in o |

a D Internet

.=

Figure 1-3 Google Suggest

A Googlo - Microsoft Intarnat Explorar

File Edil View Fawuoriles Tuwls Help

3 Back O HNE G Psearch shravorites & | -5 W-UE @ 3

Advanced Search

Address httpe: . gnngle.comfrehhp?rnmplete=18hl=sn w | Go Links ®
Web |mages Maps News Shopping Gmail more « iGoogle | Sign in &

Ajax B
ajax toolkit 264,000 results| Language Tooks
ajax control toolkit 327,000 results
ajax fo 245,000 results
As you type, Gaa aJ.ax asp.net 1,00 results L P
djdi arnslerdanm 1,350,000 1esulls
ajanian 250,000 results
ajaxcontroltoolkit 37.200 results
ajax .net 7,950,000 results
ajax loader 514,000 results
aiay narins 53.700 results bl
E O Inkernet 3

Figure 1-4 Google Suggest provides you with search matches.

Chapter 1: Essenfial Ajox 8

As you can see, Google Suggest gives Google the feeling of a desktop application—at
least partially: the screen still flickers when the browser navigates to Google to look up the
term you’ve clicked in the drop-down list (and you’ll see how to connect your own web site to
Google Suggest later in this book). That’s the main idea behind Ajax: taking interaction from
the Internet and making it seem local, as if the application were right there on your computer.

Making Internet applications seem local is the basis of what has come to be called Web
2.0. That’s the next step in software design: although the program you’re using is really in San
Francisco, it feels like it’s on your computer in New York City, just as your word processor or
spreadsheet program is.

In this chapter, you’re going to get familiar with what Ajax is about and what it has to
offer. There are thousands of Ajax-enabled web applications out there, and you’re going to get
a good sample of them in this chapter. We’ll start this survey by determining just what Ajax
is—and what it stands for.

What Is Ajax?

Ajax, which stands for Asynchronous JavaScript and XML, is a set of techniques for creating
highly interactive web sites and web applications. The idea is to make what’s on the Web
appear to be local by giving you a rich user experience, offering you features that usually only
appear in desktop applications.

The emphasis in Ajax applications is to update the web page, using data fetched from the
Internet, without refreshing the web page in the browser. You saw an example of that with
Google Suggest, where a drop-down list appears in the browser without a page refresh.

The term “Ajax” was created by Jesse James Garrett, president of Adaptive Path, in a
February 18, 2005 article collecting the technologies that already existed, and which make up
Ajax, under one umbrella term. That article, “Ajax: A New Approach to Web Applications,”
the most important one in the annals of Ajax, appears at www.adaptivepath.com/ideas/essays/
archives/000385.php.

Jesse Garrett starts off his article this way:

If anything about current interaction design can be called “glamorous,” it’s creating
Web applications. After all, when was the last time you heard someone rave about the
interaction design of a product that wasn’t on the Web? (Okay, besides the iPod.) All the
cool, innovative new projects are online.

Despite this, Web interaction designers can’t help but feel a little envious of our
colleagues who create desktop software. Desktop applications have a richness and
responsiveness that has seemed out of reach on the Web. The same simplicity that enabled
the Web’s rapid proliferation also creates a gap between the experiences we can provide
and the experiences users can get from a desktop application.

That gap is closing.

www.adaptivepath.com/ideas/essays/archives/000385.php
www.adaptivepath.com/ideas/essays/archives/000385.php

6

Ajax: A Beginner's Guide

And he goes on:

The name is shorthand for Asynchronous JavaScript + XML, and it represents a
fundamental shift in what’s possible on the Web.

Ajax isn’t a technology. It’s really several technologies, each flourishing in its own right,
coming together in powerful new ways. Ajax incorporates:

standards-based presentation using XHTML and CSS;

dynamic display and interaction using the Document Object Model;
data interchange and manipulation using XML and XSLT;
asynchronous data retrieval using XMLHttpRequest;

and JavaScript binding everything together.

In other words, Ajax is an umbrella term for techniques you use to make web applications
look like desktop applications. Here’s how it works: In the browser, code written in a
scripting language—most frequently, JavaScript, which Chapter 2 is all about—watches what
information the user wants, such as what term they’re searching for in Google Suggest. When,
or even before, the user needs that information, the JavaScript code communicates with the
web server behind the scenes to fetch that information without causing a page refresh in the
browser.

That is, the way Ajax fetches data from the server is invisible to the user. The JavaScript
code uses a special object built into the browser—an XMLHttpRequest object—to open a
connection to the server and download data from the server. That data is often in XML format
(the x in Ajax stands for XML), but it can be just plain text, as you’re going to see.

When the data that the user needs has been downloaded behind the scenes, the JavaScript
code uses that data to update the display in the browser. For example, in the earlier Google
Suggest example, JavaScript was responsible for fetching, behind the scenes, the suggestions
Google made and then displaying those suggestions in the drop-down list box after they were
downloaded.

You’re not restricted to using drop-down list boxes with Ajax. You can do just about
anything to display or report on the downloaded data, using JavaScript, because browsers
support dynamic HTML, which means changes you make in the page are updated instantly
in the browser without having to refresh the page. You can update the text in the web page,
for example, or change its size or color to bring the user’s attention to new text. You can
chat with friends and have their comments appear in the web page in real time. You can even
use Ajax, together with dynamic HTML, to download and display images corresponding
to the information the user wants. For example, you might draw graphs of business stock
performance on the server and then download and display them using Ajax and dynamic
HTML—all without a page refresh. Imagine how cool that looks: the user can select the stocks
they want to chart, and the graph on the page changes to match, all with the feel of a desktop,
not Internet, application.

Chapter 1: Essenfial Ajox 7

Ajax is made up of several components—IJavaScript, the XMLHttpRequest object,
dynamic HTML, and so on—that have been around since 1998. And before Ajax had been
formally introduced, it had already been used by a few applications (such as Microsoft’s
Outlook Web Access). But Ajax didn’t really take off until 2005, with the introduction of new
applications, such as Google Suggest, and Jesse Garrett’s famous article collecting all the parts
together into the single term Ajax.

Since then, Ajax has exploded. You can’t be a web developer unless you know how to work
with Ajax. Fortunately, Ajax is not hard to get to know, as you’re going to see in this book.

Let’s continue our guided tour of what Ajax has to offer us. Knowing what Ajax is capable
of is very important when you set out to write your own Ajax-enabled applications.

We’ll start off with a fun example: Tom Riddle’s Diary.

An Example: Ajax-driven Tom Riddle’s Diary

If you go to http://pandorabots.com/pandora/talk ?botid=c96{911b3e35f9¢1, shown in Figure 1-5,
you’ll see an online version of Tom Riddle’s Diary (Tom is a character in the Harry Potter series).

2 Tom Riddlar’s Magical Diary - Microsoft Intarnat Explorar

File Edil WView Favuorles Tuols Help
Qbeck » & -HNEA Q| Poearch Favorites & | B-S ll-UE @3

Address |] http:ffpandarsbats. comfpandora/tallobotid—cosfa11b3s35Fe1

4
|l§1‘|pwm to woﬂiwm int men e

Explorer 5.0 and Fire ﬁ ?:E
1404, P -

] Dore 4 Internst

Figure 1-5 Tom Riddle’s Diary

http://pandorabots.com/pandora/talk?botid=c96f911b3e35f9e1

8

Ajax: A Beginner's Guide

A Tom Riddlar's Magical Diary - Microsoft Internet Explorar

File Edil View Favuriles Tuols Help r#’
Qbeack » & - N A | Poearch Favorites & | 2-% @l - UE @ 3

Address |{&] http:ffpandarsbats. comfpandora/tallobotid—cosfo11b3s35Fe1

" “Torm Speaks,

;ﬁ]'f‘”E glish <
Frencl i
‘3 » Gerrnér‘] .]ta,han
3 ST
'.Fgﬂawm o wor}gwmh permiéty i“ »

'Exmlorer 6.0 and Fire g
104, j 1 :
£ I

] Dore 4 Internst

Figure 1-6 Saying Hello to Tom Riddle’s Diary

The diary is actually an Ajax-enabled web application. If you type into it, it’ll connect to
its server using Ajax, and type a response back. For example, if you type “Hello,” as shown in
Figure 1-6, the diary will type back “Hi there!” as you see in Figure 1-7.

Behind the scenes, the web page connected to its server, sent what you typed to that server,
and got a response back, which it displayed. Cool.

Tom Riddle’s Diary

Open your browser and navigate to http://pandorabots.com/pandora/talk ?botid=c96f911b3e35{9¢1
to open Tom Riddle’s diary.

Type something into the diary, such as the question, “What’s your name?” You’ll get
an answer (the answer to “What’s your name?” turns out to be: “My name is Tom Marvolo
Riddle, also known as Lord Vol...eh, forget that last thing will you.”).

You can ask detailed questions—the diary has been written to appear quite intelligent. Try
“Where are you?”, “How old are you?”, and “What is the meaning of life?”

http://pandorabots.com/pandora/talk?botid=c96f911b3e35f9e1

Chapter 1: Essential Ajax

A Tom Riddlar's Magical Diary - Microsoft Internet Explorar

File Edil View Favurles Tuols Help r#
Qik - O -H R 1;: O Search <7 Favarites 42 ['_"3' =N ' o3

Address |] http:ffpandarabats. comfpandora/tallobotid—cosfa11b3s35Fe1

m R:gﬂileﬁ o,
L‘ﬁ l‘
’h' y .. ‘% *:

.i\g'.;.,;i l,:l[‘“

\E‘“ " Ly
! fu8
i h' t ..'L-":*"

frgeile

WTEI 0 woqwm

E:’iplorer B

Figure 1-7 Getting a response from Tom Riddle’s Diary

Updating Web Page Text with Ajax

Ajax is frequently used behind the scenes to fetch text from a web server and display that text
in a web page without causing a page refresh. You can find a good example of that at http://
demos.openrico.org/complex_ajax, which appears in Figure 1-8.

This page is made available by the Rico company, which sells a JavaScript framework for
rich Internet applications. It is an Ajax demo that lets you create form letters—click a person’s
name on the left, and their name and information will appear in the body of the letter, as you
can see in the figure, no page refresh needed.

The text that Ajax applications like this one fetch from the server can be in either XML
or plain-text format—it’s good to know that Ajax works with plain text, not just with XML
(of course, “plain text” would make the acronym Ajapt, which doesn’t sound nearly as good
as Ajax).

http://demos.openrico.org/complex_ajax
http://demos.openrico.org/complex_ajax

10

Ajax: A Beginner's Guide

co - Microsoft Internet Explorer.

File Edit View Favorites Tools Help ;.1'

Qback ~ O - ¥ A | Poearch rravartes @ | R- % Ml - 8 @ 3

Address @ http: f{demaos. openrico, orgfcomplex_ajax V| Go Links **
- =
B > | i > B — o - v |

-

Ajax Demo - Javascript Updater - Form Letter

e

turn on highlighting | turn off highlighting A
nobody To: Pat Barnes Ronco Widgets Inc,
Holloman, Debhie 1743 1t Avenue

Boston Mé 71204-2345
Dampier, Joan

Dear hr. Barnes,
Hardoweay, Kimber

Story, Leslie Thank you far purchasing a Roncomatic Slusher Th. The slusher will be an invaluable
Lott, Charlle. addition to your kitchen, We are excited about the hours you will save by using our
Patton, Sabring

slusher, Pat,

Lopez, Jusn

Please take a moment to verify the billing/shipping infarmation that you gave us, If any
of the infarmation is incorrect, please contact one of our customer service
representatives at (800)-555-RMCO,

Pat Barnes
1743 1=t dvenue
Boszton, té 71204-2345

Phone: {972) 555-0293, Mobile: (972) 555-0295 3

28 Explanation
a8 Code

=]

Q Inkernet

Figure 1-8 The Rico Ajax demo

Chatting in Real Time with Ajax

There are many, many Internet applications that would benefit by appearing as a desktop
application, and some of those are chat applications that let you type interactively with other
users on the Internet.

Ajax chat sessions operate by downloading what others have typed and uploading what
you’ve typed, all behind the scenes—the page is updated in the browser without any flicker.
One Ajax chat application appears at www.plasticshore.com/projects/chat/, which is shown in
Figure 1-9.

To get started, all you have to do is enter text into the text field labeled “your message”
and click the submit button. Your message will be added to the chat display seamlessly; you
can see several people chatting back and forth in Figure 1-9.

www.plasticshore.com/projects/chat/

Chapter 1: Essential Ajax

‘@ XHTML live chat based on the XMLHttpRequest Object - Microsoft Internet Explorer

File Edit View Favorites Tools Help #
Qbak ~ © - ¥ A | Poearch rFavartes @ | 2- % Ml - 8 @ 3
Address @ http: ffchat, plasticshore,.com/f IV| Go Links **
~
: XHTML live Chat (] weewar. &
your name: Comer
hP(alexander kohlhafer
guest_2480 asticshore. com =
your message: |
| submit

= g1 XHTML live Chat based on the
ELT] XMLHttpRequest Object (ajax)

B TECHNICIEN :
[

B TecHNIDIEN :
Que vous dit-elle
Supported by
=,
Elle ne veuw plus me parler :-(

Ads by Google

B TecHNIIEN :
Quel est ce probleme?

a Done | | | | | | 4 Internet

Figure 1-9 Chatting with Ajax

Dragging and Dropping with Ajax
In time, web applications are going to look more and more like desktop applications, and
that means all types of desktop techniques will be available on the Web. For example, many
desktop applications use drag-and-drop techniques—you can drag icons or objects around
with the mouse and drop them. And now you can drag and drop on the Web as well, thanks
to Ajax, which is used behind the scenes to inform the server where you dropped what you
were dragging.

Figure 1-10 shows an Ajax-enabled drag-and-drop Internet application called Mosaic. The
idea is that you and other people can drag and drop tiles to create a shared work of art. You can
find Mosaic at www.thebroth.com/mosaic.

As you can see, you can do a lot with Ajax, just by sending text and XML back and forth
to and from the server behind the scenes. It’s just too bad you’re limited to working with text

and XML—wouldn’t it be great if you could download images behind the scenes? As it turns
out, you can.

11

www.thebroth.com/mosaic

12

Ajax: A Beginner's Guide

2 TheBroth.com/mozaic - Microsoft Intarnet Explorar

File Edil View Favorles Tuols Help *’
Qbck - & - N EA | Poearch Favoriees & | B-% Wl -UE @3

Address @ http f e, thebroth, comfmosaic

(uoe) (unpno)

Figure 1-10 Dragging and dropping Ajax

Downloading Images with Ajax (and Dynamic HTML)

Behind the scenes, Ajax communicates with the server using text (that includes XML, which
is also text). So on the face of it, Ajax doesn’t seem suited to downloading binary data, like
images. However, with a little help from the dynamic HTML that’s built into browsers these
days, you can also download images.

You can download images using Ajax thanks to JavaScript. When you change the name of
the image currently being displayed in an HTML tag, the browser will automatically
download the new image. That means that all you have to do with Ajax is download the name
of the new image you want to display, and rely on JavaScript to do the rest.

You are going to create code for an example of this later in this book; the example appears
in Figure 1-11. Simply click one of the two buttons to download a new image—completely
behind the scenes—and display it, as shown in Figure 1-11. Very cool.

And, adapting this technique, you can download and use other binary data as well, using Ajax.

There are thousands of other Ajax applications. For example, take a look at Netflix’s top
100 video list, at www.netflix.com/Top100, as shown in Figure 1-12. The information you see
in the pop-up about the movie was downloaded using Ajax.

www.netflix.com/Top100

Figure 1-

Chapter 1: Essential Ajax

Downloading images with Ajax Microsoft Internet Explorer

Fle Edt View Favortes Tools Help e
Qbeack » & - N @A (@ Poearch rravoites & (A- % W - E @ 3
Addrcsi@ht}p;fﬂoc&osﬂimugc.l&ml V| Go Links 2

Downloading images with Ajax

[Display Image 1 'L\\\J{ Display Image 2]

Image 1

11 Downloading images with Ajax

2 Notflis: Netflix Top 100 - Free Trial - Microsoft Internat Explorar El[i'E'

File Edil View Fawuoriles Tuols Help
Qbeack » & - N A @ Poearch ravoriies @ -5 @l - U E @ 3

Arddrass @ http: f . netfliv_comfTapl 00 ¥ . Gn links

Welcome

NETELLN

How It Works

Browse Selection | Start Your FREE Trial

our home.

The best Way t Crash JE DATES!

rent mOVIes. A36-hour period in the diverse
metropolis of post-5ept 11 Los
Angeles is the theme of this
unflinching drama that
challenges viewers to canfrant
k| their prejudices. Lives comiust
whan a Brantwvood housewifa

Netflix Top 100

and her DA hushand, a Persian
Top 100 shopkeeper, two cops, a pair of carjackers BROWSE
and a Karean couple all converge. Directar
5. m Cifksh Paul Haggis's Bast Picture Ogearwinnar iy
3 stars Sandra Bullock, Brendan Fraser, Dan e
Cheadle, Matt Dillon and Jennifer Esposito. L
2. m The Depal Ky Al & Aubvenlurs
Starnng: Sandra Hullock, Don Cheadle Aaiinne & Aninlion
Ak m i znd Mrs. § Director: Paul Haggis kg Blu-ray
Genre: Dramsa Chiludren & Fanily
4. EQ vakteling "PARR - R Classics
L e & & 1 4.0 Custorner Average Comedy
5. X)) Little miss Sul b ¢ Documertary 3
= | B
@ ik fvaw net i, comMoviefCrashf70023961 ® Internet

Figure 1

-12 The Netflix top 100

13

14 Ajox: A Beginner's Guide

2 CGlskak - Microsoft Internet Explorer

File Edit View Favorites Tools Help
@Back -) ERER O search <7 Favorites 48 (=~ =Y B o3

Address @ http:f v, JesperOlsen. Met [PChess) . ke

New Game

Change side

@ White's turn o Internet

Figure 1-13 Ajax chess

How about a game of chess? Take a look at the Ajax-enabled chess site at www
JesperOlsen.Net/PChess/, which appears in Figure 1-13. Move a piece simply by clicking it
and then clicking the square you want to move it to.

There are thousands and thousands of Ajax applications available, and by now you can see
some of the potential. For example, imagine an online shopping site where you don’t have to
go through four or five flickering screens to add something to your shopping cart—you just
drag the item to a shopping cart icon and, behind the scenes, Ajax informs the server of your
purchase.

All this and more is coming up in this book. Turn now to Chapter 2, where you get
JavaScript—the foundation of Ajax—under your belt.

www.JesperOlsen.Net/PChess/
www.JesperOlsen.Net/PChess/

Chapter 2

Getting to Know
JavaScript

15

16 Ajax: A Beginner's Guide

Key Skills & Concepts

JavaScript properties and methods
Storing your data in variables and arrays
Making decisions with the if statement
Looping with the for and while loops

Connecting JavaScript to HTML buttons

We’re going to start this chapter by jumping in with an Ajax example immediately. Take
a look at Figure 2-1 to see this example, ajax.html, at work.

As shown in Figure 2-1, ajax.html displays a button with the caption “Fetch the message.”
When you click the button, the text in a file named data.txt is fetched from the server; here’s
what’s in data.txt (note that this is simple text, which demonstrates that Ajax can download
simple text in addition to XML):

Welcome to Ajax!

This text will be fetched from the server using Ajax, and displayed in the ajax.html page.
All that happens when you click the button in ajax.html, as you can see in Figure 2-2.

A An Ajax example - Microsoft Internet Explorer.

File Edit View Favorites Tools Help

Address @ http: fflocalhost fchapter2fajasx:, html V| Go Links **

An Ajax example

[Fetch the message Q

The fetched message will appear here.

Figure 2-1 Ajax.html

Chapter 2: Getting to Know JavaScript 17

A An Ajax example - Microsoft Internet Explorer |:||§|r>__<|
File Edit View Favorites Tools Help l?
Qback ~ O - ¥ A | Poearch TrFavartes 8 | R- & W - L @B @ 3

Address @ http: fflocalhost fchapter2fajas:, html V| Go Links **

An Ajax example

L Fetch the message]

“Welcome to Ajal

Figure 2-2 Ajax.html fetching data from the server

Test ajax.html

This is your first true example of an Ajax script written from scratch. To get this example
working yourself, download the code for this book and unzip it, then copy ajax.html and data.txt
from the chapter2 directory. Copy those files into a directory in a web server—for example, you
might use your ISP’s web server if you already host web pages there. If you don’t have an ISP,
you’ll need to sign up for one at this point—ideally one that supports PHP, which we’re going to
use for programming later in this book. Ask your ISP staff how to upload files to the web server.

Copy ajax.html and data.txt to the same location on your web server (that is, they should
be in the same directory). Then open your browser and navigate to ajax.html with a URL
something like www.your_isp/your_name/ajax.html. When ajax.html appears in your browser,
click the button to get the results shown in Figure 2-2.

If you have Windows XP Pro or Windows Vista Business or Ultimate, you may already
have a functioning web server, Microsoft Internet Information Server (IIS), on your
computer—if you have a directory named c:\inetpub, you have IIS. Open the directory c:\
inetpub\wwwroot, and create a new directory, such as c:\inetpub\wwwroot\chapter2, and store
ajax.html and data.txt in that directory. Then navigate to http://localhost/chapter2/ajax.html to
see ajax.html at work.

So what does ajax.html actually look like? It is an example of the kind of code we’re going
to be developing throughout the book, and here it is:

<html>
<head>
<title>An Ajax example</titles>

<script language = "javascript">
var XMLHttpRequestObject = false;

18 Ajax: A Beginner's Guide

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft.XMLHTTP") ;

}

function getData(dataSource, divID)

{

if (XMLHttpRequestObject) {
var obj = document.getElementById(divID) ;
XMLHttpRequestObject.open ("GET", dataSource) ;

XMLHttpRequestObject.onreadystatechange = function()
{

if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
obj.innerHTML = XMLHttpRequestObject.responseText;
}

}

XMLHttpRequestObject.send (null) ;
}
}

</script>
</head>

<body>

<H1>An Ajax example</H1>

<form>
<input type = "button" value = "Fetch the message"
onclick = "getData('data.txt', 'targetDiv')">
</form>

<div id="targetDiv">
<p>The fetched message will appear here.</p>
</div>

</body>
</html>

The code above that’s in bold is JavaScript, the heart of Ajax. To write Ajax applications,
you need to know JavaScript—and that is what this chapter is all about.

Chapter 2: Getting to Know JavaScript

Introducing JavaScript

JavaScript was first created and introduced to the world in 1995, by a developer named
Brendan Eich at Netscape Communications Corporation. He named his programming language
LiveScript, but the powers that were at Netscape renamed it JavaScript. The Java programming
language was wildly popular at that time, and even though JavaScript is not related to Java, the
name stuck. (In fact, the creators of the Java language, Sun Microsystems, had trademarked the
name Java, and so the name “JavaScript” was made a trademark of Sun Microsystems.)

JavaScript was a hit. It was fun, it was powerful—in a word, it was cool. Programmers
loved the things you could do with it in web pages. You could alter the text in web pages,
respond to the mouse, change color schemes, and more. Web page writers ate this up.

And JavaScript inevitably caught the attention of Microsoft. At the time, the two dominant
browsers were Netscape Navigator and Microsoft Internet Explorer. Microsoft didn’t want
to be left behind in the JavaScript wars, but it didn’t want to simply license JavaScript from
Netscape—so it created its own version, JScript.

JScript first appeared in 1996, in Internet Explorer 3.0, and over the years, JavaScript and
JScript have become increasingly similar. However, there are a few differences that we’ll come
across in our guided tour of Ajax (for example, the way you create XMLHttpRequest objects,
the fundamental programming construct of Ajax, differs in JavaScript and JScript), but it won’t
be anything we can’t handle.

As an interesting historical note, both Netscape and Microsoft turned to a third party, the
standards body European Computer Manufacturers Association (Ecma International, www
.ecma-international.org) to standardize JavaScript so that it could be used in both browsers.
What happened in fact was that a third language, ECMAScript, was born. And most browsers’
versions of JavaScript are coming in line with ECMAScript these days.

Ask the Expert

Q: Are there any online references for JavaScript, JScript, and ECMAScript?

A: Yes indeed. You can find a reference for J avaScript at http://developer.mozilla.org/en/docs/
Core_JavaScript_1.5_Reference, and a reference for JScript is at http://msdn2.microsoft
.com/en-us/library/hbxc2t98(vs.71).aspx.

There is also a great deal of information about ECMAScript available online:

The ECMAScript Language Specification, 3rd edition, is at
www.ecma-international.org/publications/standards/Ecma-262.htm.

The ECMAScript Components Specification is at
www.ecma-international.org/publications/standards/Ecma-290.htm.

The ECMAScript 3rd Edition Compact Profile Specification is at
www.ecma-international.org/publications/standards/Ecma-327 . htm.

Now let’s start digging into JavaScript and seeing it work.

19

www.ecma-international.org
www.ecma-international.org
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference
http://msdn2.microsoft.com/en-us/library/hbxc2t98(vs.71).aspx
http://msdn2.microsoft.com/en-us/library/hbxc2t98(vs.71).aspx
www.ecma-international.org/publications/standards/Ecma-262.htm
www.ecma-international.org/publications/standards/Ecma-290.htm
www.ecma-international.org/publications/standards/Ecma-327.htm

20 Ajax: A Beginner's Guide

Getting Started with JavaScript

We’re going to see JavaScript programming at once with a new example, javascript.html. This
example appears in Figure 2-3.

In this first example, we’re using JavaScript code to write the header “Welcome to
JavaScript!” that appears in Figure 2-3; doing so will give us our start with JavaScript.

You embed your JavaScript in a web page. Say, for example, that javascript.html started
off like this—just pure HTML:

<html>
<head>

<title>This is a first JavaScript example</title>
</heads>

<body>

This is a first JavaScript example.
</body>
</html>

Now we’re going to start adding JavaScript. You place your JavaScript code into an HTML
<script> element, which goes inside the page’s <head> element, like this:

<html>
<head>

<title>This is a first JavaScript example</title>

<script language="javascript">

</script>
</head>

<body>
This is a first JavaScript example.
</body>
</html>

A This is a first JavaScript example - Microsoft Internet Explorer,

File Edit View Favorites Tools Help :ﬂ'
Qback - O - ¥ A (2| Poearch TrFavartes 8 | R- & W - L @& @ 3
Address @ http: fflocalhost fchapter2fjavascript. html V| Go Links **

Welcome to JavaScript!

Thiz 15 a first JTavaScrpt example.

Figure 2-3 javascript.html

Chapter 2: Getting to Know JavaScript 21

Note that the <script> element is an HTML element like any other. Its purpose is to tell the
browser that there is JavaScript code present, and that the browser should run that code. Notice
also the language attribute of the <script> element, which has been set to the value "javascript"
here, indicating that the scripting language used inside the <script> element is JavaScript
(there are other scripting languages, such as VBScript, which runs in Internet Explorer).

Now our job is to write the header “Welcome to JavaScript!” (see Figure 2-3) to the web
page. In JavaScript, you interact with the browser through the use of built-in objects; these
objects exist already, and can be accessed from your JavaScript code by name. Here are the
four most commonly used objects:

document Represents the web page itself
history Represents the list of URLSs that the browser has already been to
window Represents the browser itself

XMLHttpRequest The object that you use in Ajax to communicate with the server

In JavaScript, objects have methods and properties. A method is a chunk of code built
into the object that performs some action—for example, you use the document object’s write
method, which you access as document.write, to write to the document (that is, the current web
page). Here are some representative methods and what they do in JavaScript:

document.write Lets you write text to the current web page
history.go Moves the browser to a page in the browser’s history

window.open Opens a new browser window

Properties, on the other hand, are just settings that you can place data into. For example,
document.bgcolor lets you access the bgcolor value of the HTML <body> element—that
is, the background color. (JavaScript properties often take their names from the attributes of
HTML elements, such as the bgcolor attribute of the <body> element.) Here are a few of the
useful properties that are available:

document.bgcolor Holds the background color of the current page
document.fgcolor Holds the foreground color of the current page
document.lastmodified Holds the date the page was last modified
document.title Holds the title of the page

location.hostname Holds the name of the page’s host

navigator.appName Holds the type of the browser

22

Ajax: A Beginner's Guide

We’re going to use the document.write method to write to the current web page in the
javascript.html example. You can send the text you want written to the web page by placing
that text in parentheses, which passes that text to the document.write method, like this:

<html>
<head>
<title>This is a first JavaScript example</titles

<script language="javascript"s
document.write ("<hl>Welcome to JavaScript!</hl>");
</script>
</head>

<body>
This is a first JavaScript example.
</body>
</html>

Lines of code like this are called statements in JavaScript and, as you can see, they end
with a semicolon. Note that we’re actually passing HTML to the document.write method—that
is, the text we’re displaying in the current web page is "<h1>Welcome to JavaScript!</h1>",
which displays the “Welcome to JavaScript!” text inside an <h1> header, just as if you added
this HTML in a web page yourself:

<hl>Welcome to JavaScript!</hl>

And you can see the results in Figure 2-3, where the new header appears. Not bad.

Note the placement of the text in Figure 2-3. The header, which we wrote with JavaScript,
appears on top of the text in the <body> element. Why? That’s because when the browser reads
in javascript.html, it processes the page as it reads it, and it reads the <head> section (where
our JavaScript is) first. So the JavaScript code gets executed before the browser sees the text
in the <body> element, giving you the results you see in Figure 2-3. In general, the code in a
<script> element is executed as soon as it is loaded, but that’s not what you always want; you
may want to wait to execute your JavaScript until the user clicks a button, for example. Later
in this chapter, you’ll see how to make sure JavaScript code is executed only when you want to
execute it—not automatically when the page loads.

Get javascript.html to Work

You’re going to need a text editor of some kind to enter javascript.html and run it in a browser.
(You could just get javascript.html from the chapter2 folder in the downloadable code for this
book, but to follow along in this book, you have to know how to create your own files.)

For example, in Windows, Windows WordPad will work fine. Open WordPad and enter
the text for javascript.html. To save javascript.html, choose File | Save As to open the Save
As dialog box. Give the file the name javascript.html and—this is important—in the Save

Chapter 2: Getting to Know JavaScript 23

As Type drop-down list box, choose Text Document, not the default Rich Text Format (RTF).
If you save web pages in RTF format, browsers won’t be able to read them.

And here’s another note about WordPad: if you save a file with a filename extension that
WordPad isn’t familiar with, it’ll append the suffix “.txt” to your file. That’s not a problem with
HTML files, because they have the extension .html, which WordPad understands. But it will
be an issue when it comes to creating the PHP files we’ll be using to perform programming on
the web server toward the end of this book (PHP is a programming language you use on web
servers, as you’ll see starting in Chapter 9). For example, if you try to save a file as ajax.php
with WordPad, WordPad saves the file as ajax.php.txt, which won’t work on the server. Instead,
you must enclose the name of the file in quotation marks in the File Name box in the Save As
dialog box, like this: “ajax.php”. Doing so tells WordPad that you don’t want the name of the
file you’re saving to be changed, and thus it won’t append the .txt extension.

You can save javascript.html to a web server or, if you like, simply to your hard disk—
relying purely on JavaScript and not needing to interact with a server, javascript.html can
be opened directly in your browser from disk. After saving javascript.html, open it in your
browser and confirm the results by comparing it to what you see in Figure 2-3. You can
navigate to javascript.html by entering the URL to access it on your web server, or by opening
it directly from disk (in Internet Explorer, choose File | Open and browse to javascript.html; in
Firefox, choose File | Open File).

Note also that some users may have JavaScript support turned off in their browsers, in
which case they can’t run javascript.html and can’t run Ajax. (You might consider putting
a note in your web page saying that if the user doesn’t see the desired effect to make sure
JavaScript support is turned on in their browser.)

Adding Comments to Your Code

Now that we’ve got some JavaScript running, it’s worth noting that you can annotate your code
with comments, text that is intended to be read by people, not by the computer (which ignores
them). Using comments makes your JavaScript much more readable, and explains in plain
language what your program does.

There are two forms of comments in JavaScript: single line and multiple line. A single-line
comment starts with // (two forward slashes), like this:

<html>
<head>
<title>This is a first JavaScript example</titles

<script language="javascript"s
//Write to the web page
document .write ("<hl>Welcome to JavaScript!</hls>");
</scripts>
</heads>

24 Ajax: A Beginner's Guide

<body>
This is a first JavaScript example.
</body>
</html>

Everything that follows the // on a line is ignored by the browser. You can also put a single-
line comment at the end of a line of code, like this:

<html>
<head>

<title>This is a first JavaScript example</title>

<script language="javascript"s

document .write ("<hl>Welcome to JavaScript!</hl>"); //Write to the page
</scripts>

</head>

<body>

This is a first JavaScript example.
</body>
</html>

Multiple-line comments are surrounded by /* and */. When you use /¥, the browser ignores

everything that follows until it sees a */ to end the comment. Here’s an example of a multiline
comment:

<html>
<head>

<title>This is a first JavaScript example</title>

<script language="javascript"s
/*
Write
to
the
web page.
*/
document .write ("<hl>Welcome to JavaScript!</hl>");
</script>
</head>

<body>

This is a first JavaScript example.
</body>
</html>

Using External JavaScript Files

You’ll often see Ajax-enabled web pages with this kind of syntax, and no JavaScript inside the
web page itself (external.html):

Chapter 2: Getting to Know JavaScript 25

<html>
<head>
<title>Using external JavaScript</title>

<script language="javascript" src="script.js">
</head>

<body>
<h1>Using external JavaScript</hls>
</body>
</html>

What’s going on here? In this case, the JavaScript code is being stored externally, in a file
named script.js. So what’s actually in script.js? Just the exact lines of JavaScript you want to
execute, nothing else. For example, in this case, that would be

document .write ("<hl>Welcome to JavaScript!</hls>");

This new example works much like the example you’ve already seen, javascript.html,
except that the JavaScript is external to the web page. You’ll see this often in Ajax—you can
find large JavaScript libraries of prewritten code that can run to dozens of pages. Some of
that code is written to support Ajax for you so that you only have to write minimal code, and
in that case, those libraries are called Ajax frameworks (see Chapter 5). When you use such
a framework, it would be awkward if you had to include its whole code—dozens of pages of
it—in your own web pages. The solution is that Ajax frameworks package their JavaScript in
external files, and you simply refer to that code as you see here, with the <script> element’s src
attribute. Problem solved.

Okay, up to this point, the JavaScript code you’ve seen was executed by the browser as
soon as the page containing that JavaScript was loaded. But what if you want to run your
JavaScript—for example, to display new text—only after the page is loaded and the user has
clicked a button? That’s coming up next.

Handling Events in the Browser

So far, your JavaScript has been run as soon as the page was loaded:

<html>
<head>
<title>This is a first JavaScript example</title>

<script language="javascript">
document.write ("<hl>Welcome to JavaScript!</hl>");
</script>
</heads>

<body>
This is a first JavaScript example.
</body>
</html>

26

Ajax: A Beginner's Guide

But you may want to execute some code only when something happens, such as a mouse
click or when a character is typed. In that case, you can set up your JavaScript code to respond
to browser events (like mouse clicks or key presses).

An event is just what it sounds like—something’s happened; the user clicked a button,
for example. What events are available? Here are some common ones that you might see in

Ajax applications:

Event Occurs when...

onabort an action is aborted.

onblur an element loses the input focus.
onchange data changes in a control, such as a text field.
onclick an element is clicked.

ondblclick an element is double-clicked.

ondragdrop a drag-and-drop operation is undertaken.
onerror there’s been a JavaScript error.

onfocus an element gets the focus.

onkeydown a key goes down.

onkeypress a key is pressed and the key code is available.
onkeyup a key goes up.

onload the page loads.

onmousedown a mouse button goes down.
onmousemove the mouse moves.

onmouseout the mouse leaves an element.
onmouseover the mouse moves over an element.
onmouseup a mouse button goes up.

onreset the user clicks a Reset button.

onresize an element or page is resized.

onsubmit the user clicks a Submit button.

onunload a page is unloaded.

To handle these events, you use attributes of the same name in HTML tags. Let’s take
a look at a simple example, click.html, that makes this more clear. In this case, we’ll make
the page respond when you click it, using inline JavaScript—that is, JavaScript code that is

assigned to an event attribute in an HTML tag like this (click.html):

<html>
<head>
<titles
Using browser events

Chapter 2: Getting to Know JavaScript 27

</title>
</heads>

<body onmousedown="alert('You clicked the page.')">
<hl>
Click this page!
</hl>
Go ahead...
</body>
</html>

What’s happening here is that we’re using the onmousedown event of the <body> element
(which represents the whole web page) to respond to mouse down events (that is, the mouse button
was pressed). When the user presses the mouse button while in the page, the onmousedown event
“fires” (that’s the technical term) and the JavaScript assigned to that event is executed.

In this case, that JavaScript is the statement alert("You clicked the page.'), which displays
a JavaScript alert box (that is, a dialog box) with the text “You clicked the page.” in it.

Ask the Expert

Q: Why did you use single quotation marks in the statement alert('You clicked the
page.')? Should that be alert(''You clicked the page.')?

A: You use single quotation marks to avoid confusing the browser. Note that inline JavaScript
has to be totally enclosed in quotation marks, like this:

<body onmousedown="alert('You clicked the page.")">

If we didn’t alternate between double and single quotation marks, the browser wouldn’t
know where the text to display started and stopped.

You can see this in action in Figure 2-4, where you see click.html.

‘A Using browser events - Microsoft Internet Explorer

File Edit View Favorites Tools Help
Qback - O - ¥ A 0| Poearch rFavartes 8 | D- & W - L @& @ 3
Address @ http: fflocalhostfchapter2iclick, html V| Go Links **

Click this page!

Go ahead. .

Figure 2-4 click.html

28 Ajax: A Beginner's Guide

Microsoft Internet Explorer. rg|

1] E ‘fou clicked the page.
L]

Figure 2-5 click.html at work

When you click the page, a dialog box appears indicating that the click was noticed, as you
see in Figure 2-5. Cool. Now you’ve responded to a browser event.

Get click.html to Work

Enter the code for click.html into a file using your text editor (or, if you want the easy way, just
copy click.html from the chapter2 folder of the downloadable code from this book), and store
that file either on a web server that is accessible to your browser or just on disk.

Now open your browser and navigate to click.html—and click the page. You should see the
dialog box that appears in Figure 2-5. Good job!

Okay, that’s one way to respond to browser events—with inline JavaScript code. But as
your JavaScript code gets larger and larger, it’s going to be impossible to store inline. So what
can you do?

You can use JavaScript functions, coming up next.

Working with JavaScript Functions

You already know that you can write code in a <script> element that will be executed
automatically when the page is loaded:

<html>
<head>
<title>This is a first JavaScript example</title>

<script language="javascript">
document.write("<hl>Welcome to JavaScript!</hl>");
</script>
</head>

<body>
This is a first JavaScript example.
</body>
</html>

Chapter 2: Getting to Know JavaScript 29

To execute code when you want to execute it, you need to place that code in a JavaScript
function (functions are just like methods, except that methods are contained inside JavaScript

objects, and functions are free-standing). For example, here’s how you might create a function
named display:

<html>
<head>

<title>Using JavaScript functions</titles>

<script language="javascript"s
function display()

{

}

</scripts>
</head>

<body>
<hl>Using JavaScript functions</hl>
</body>
</html>

Note the syntax here—you use the keyword function, followed by the name of the new
function, and a pair of parentheses. That’s followed by the code of the function, enclosed in
curly braces, { and }, which is where the code will go.

To run the code in the function, you have to call that function, and we’ll do that when the
user clicks a button, so add that button using the HTML <input> tag now, like this:

<html>
<head>
<title>Using JavaScript functions</titles>
<script language="javascript"s>
function display ()
{
}
</script>
</head>
<body>

<h1>Using JavaScript functions</hl>

30 Ajox: A Beginner's Guide

<form>
<input type="button" value="Click Here">
</form>

</body>
</html>

Note that in HTML you have to enclose controls, like buttons, list boxes, checkboxes,
and so on, in an HTML <form> element. The <input> element here creates a button with the
caption “Click Here.”

So how do we actually call the display function when the user clicks the button? You can
use a little inline code for that. Just giving the name of the function, followed by parentheses,
calls the function, so we can call the function when the user clicks the button by assigning the
function call to the button’s onclick event:

<html>
<head>
<title>Using JavaScript functions</title>

<script language="javascript"s>
function display ()

{

}

</scripts>
</head>

<body>
<h1>Using JavaScript functions</hl>
<form>
<input type="button" onclick="display ()"
value="Click Here">
</form>

</body>
</html>

Now the display function will be called when the user clicks the button. In the display
function, we can write a message—say, “You clicked the button.”—to the web page. So, can
we do that with the following code?

<html>
<head>
<title>Using JavaScript functions</title>

<script language="javascript"s

Chapter 2: Getting to Know JavaScript

function display ()

{

document.write("You clicked the button.");

}

</script>
</head>

<body>
<h1>Using JavaScript functions</hl>
<form>
<input type="button" onclick="display()"
value="Click Here">
</form>

</body>
</html>

Unfortunately not. The display function will indeed be called after the body of the page
loads—when the user clicks the button—and that’s fine. But there’s a catch. When the body
of a page is loaded, you can no longer use the document.write method, because the document
is considered closed. And opening it again to write to it clears any text in it, so that’s no good
here—all you’d see is the “You clicked the button.” message because the “Using JavaScript
functions” header will have been overwritten.

The way to display new text in a web page after that page has been loaded is to write to an
existing HTML element, like a <div> element. For example, you might add a <div> element
and give it the ID targetDiv:

<html>
<head>
<title>Using JavaScript functions</title>
<script language="javascript"s>
function display ()
{
}
</scripts>
</head>
<body>
<h1>Using JavaScript functions</hl>
<form>

<input type="button" onclick="display ()"
value="Click Here">
</form>

31

32 Ajox: A Beginner's Guide

<div id="targetDiv">
</div>
</body>
</html>

So how can you address the targetDiv element in the JavaScript code in the display function?
You have to tell JavaScript which HTML element you want to place text into in order to display
that text, and to find an HTML element in the web page, you can use the JavaScript method
document.getElementByld.

You pass this method the ID of the element you want to find; to pass data to a method or
function, you enclose that data in the parentheses (as you did with document.write: document
.write("Here is the text")). So to find the targetDiv HTML element, you can call document
.getElementByld('targetDiv'). This method call refurns an object corresponding to the targetDiv
<div> element—when a method or function returns data, you get access to that data. For
example, the object corresponding to the targetDiv <div> element supports various methods
and properties of its own, and one of those properties, innerHTML, contains the text now in
the element. That means you can store new text in the element by assigning that new text to the
expression document.getElementByld('targetDiv').innerHTML.

Here’s the way you can store the text ““You clicked the button.” in the targetDiv <div>

element:
<html>
<head>
<title>Using JavaScript functions</title>
<script language="javascript"s>
function display ()
{
document.getElementById('targetDiv') .innerHTML =
"You clicked the button.";
}
</scripts>
</head>
<body>
<h1>Using JavaScript functions</hl>
<form>

<input type="button" onclick="display()"
value="Click Here">
</form>

<div id="targetDiv"s>
</div>
</body>
</html>

Great, we’re ready to go; open functions.html in a browser, and click the button. When you
do, you’ll see the text “You clicked the button.” displayed, as shown in Figure 2-6.

Chapter 2: Getting to Know JavaScript 33

& | Using Javascript functions - Microsoft Internet Explorer.

File Edit View Favorites Tools Help
Qeiack - O - ¥ A (0| Poearch TrFavortes 8 | D- & W - L @ @ 3
Address @ http: fflocalhost fchapter 2 functions, html V| Go Links **

Using Javascript functions

Click Here k

Tou clicked the button.

Figure 2-6 Using JavaScript functions and HTML buttons

Passing Data to Functions

Just as you can pass data to the methods already built into JavaScript, so too can you pass data
to the functions you create. For example, say that you want to specify the message that you
want to display by passing that message to the display function. You could pass that message
to the display function by placing it inside the parentheses when you call display in a new web
page, message.html, as we’ve seen with calls to methods:

<html>
<head>

<title>Passing data to functions</title>

<script language="javascript"s>
function display ()

{

}

</script>
</head>

<body>

<hl>Passing data to functions</hls>

<form>
<input type="button" onclick=

"display('You are seeing this thanks to JavaScript')" value=
"Click Here">

</form>

34 Ajox: A Beginner's Guide

<div id="targetDiv">
</div>

</body>
</html>

So how do you read the message that was passed to the display function in code? It’s
simple—you just give a name to the data passed to the display function by listing that name in
the parentheses when you create the display function:

<html>
<head>
<title>Passing data to functions</title>

<script language="javascript"s>
function display (message)

{

}
</scripts>
</head>
<body>

<hl>Passing data to functions</hl>

<form>
<input type="button" onclick=
"display('You are seeing this thanks to JavaScript')" wvalue=
"Click Here">

</form>

<div id="targetDiv">
</div>

</body>
</html>

Now you can refer to the data passed to the display function with the name you’ve given
that data—message—in the body of the function. So, for example, to display that message in
the web page, you could do this (message.html):

<html>
<head>
<title>Passing data to functions</title>

Chapter 2: Getting to Know JavaScript

<script language="javascript"s>
function display (message)

{
}

</scripts>
</heads>

document.getElementById ("targetDiv") .innerHTML = message;

<body>

<hl>Passing data to functions</hls>

<form>

<input type="button" onclick=

"display('You are seeing this thanks to
"Click Here">
</form>

JavaScript')" value=

<div id="targetDiv">
</divs>

</body>
</html>

You can see this at work in Figure 2-7. Click the Click Here button and your message will

be passed to the display function, which grabs that message and displays it in the web page, as
you see in Figure 2-7.

A Passing data to functions - Microsoft Internet Explorer

File Edit View Favorites Tools Help

Qback ~ O - ¥ A 0| Poearch rFavartes 8 | @- & W - L @B @ 3

Address @ http: fflocalhostfchapter2fmessage. html

Passing data to functions

Tou are seeing this thanks to JTavaZcript

Figure 2-7 Passing data to JavaScript functions

35

36 Ajox: A Beginner's Guide

AL Pass Data to Functions

Enter the code for message.html into a file using your text editor, and store that file either on a
web server that is accessible to your browser or just on disk. Change the message passed to the
display function from "You are seeing this thanks to JavaScript' to 'Hey, this works!".

Now open your browser, navigate to message.html, and click the button. You should see
your message displayed. Cool!

What if you want to pass multiple data items to a function? You can do that simply by
passing those items, separated by commas, in the parentheses following the function’s name.
For example, say that you have two <div> elements in the page, targetDiv and targetDiv2:

<html>
<head>
<title>Passing data to functions</title>

<script language="javascript"s>
function display (message)

{

document .getElementById ("targetDiv") .innerHTML = message;

}

</script>
</head>

<body>
<hl>Passing data to functions</hl>

<input type="button" onclick=
"display ('You are seeing this thanks to JavaScript')" value=
"Click Here">

<div id="targetDiv">
</div>
<div id="targetDiv2">
</div>

</body>
</html>

How could you specify which <div> element to display your message in? You could pass
the ID of that <div> element to the display function, and that would work like this:

<html>
<head>
<title>Passing data to functions</title>

Chapter 2: Getting to Know JavaScript 37

<script language="javascript"s>
function display (message)

{

document .getElementById("targetDiv") .innerHTML = message;

}

</scripts>
</head>

<body>
<hl>Passing data to functions</hl>

<input type="button" onclick=
"display('You are seeing this thanks to JavaScript', 'targetDiv')"
value="Click Here">

<div id="targetDiv"s>
</div>
<div id="targetDiv2">
</div>

</body>
</html>

Next, in the display function, you could name the second data item that you pass something
like elementID by writing the function like this:

function display(message, elementID)

{

}

Now you’re free to use the elementID data item in your code to place the message in the
corresponding <div> element like this:

<html>
<head>
<title>Passing data to functions</title>

<script language="javascript"s>
function display(message, elementID)

{

document.getElementById(elementID) .innerHTML = message;

}

</scripts>
</head>

38 Ajox: A Beginner's Guide

<body>
<hl>Passing data to functions</hl>

<input type="button" onclicks=
"display('You are seeing this thanks to JavaScript', 'targetDiv')"
value="Click Here">

<div id="targetDiv"s>
</div>

</body>
</html>

And that’s all there is to it.

Returning Data from Functions

You can also return data from functions. In other words, a function can do its work and pass you

a result of some kind back. For example, say that you have a clever function named adder, and

you pass it two numbers to add—how can it send you back the answer from the adder function?
Say that adder looks like this:

function adder (operandl, operand2)

{

}

You can return a value from a function with the return statement, which in adder’s case
looks like this:

function adder (operandl, operand2)

{

return operandl + operand2;

}

That is, we’re adding operand]1 and operand2, the two data items passed to adder, and
returning the sum. That way, when you call, say, adder(6, 6), JavaScript will replace that call
with the value returned from the adder function at run time. All of which means that here’s
how you can call adder from another function, display (this is adder.html):

<html>
<head>
<title>Returning data from functions</title>

<script language="javascript"s
function display ()

{

document.getElementById("targetDiv") .innerHTML =

Chapter 2: Getting to Know JavaScript 39

"6 + 6 = " + adder (6, 6);
}
function adder (operandl, operand2)
{
return operandl + operand2;
}
</scripts>
</head>
<body>

<hl>Returning data from functions</hl>
<input type="button" onclick="display ()" value="Click to add 6 + 6">

<div id="targetDiv">
</div>

</body>
</html>

Take a look at adder.html in Figure 2-8. When you click the button, presto, 6 is added to 6
and you can see the results.

What happened here was that 6 and 6 were passed to the adder function, which added them
and returned the sum, 12. Nice.

Return Data from Functions

Try your own version of the adder example, but instead of adding two numbers, multiply them!
Write and put to work a function named multiplier instead of adder, and pass two values to
multiplier—and then display the resulting product. In JavaScript code, you multiply using the
* symbol; for example, 6 * 6 = 36.

A Returning data from functions - Microsoft Internet Explorer |:||§|rz|
File Edit View Favorites Tools Help 't"

Qiack - O - ¥ A | Poearch rFavartes 8 | D- & W - L @B @ 3

Address @ http: fflocalhost fchapter2fadder html V| Go Links **

Returning data from functions

6+6=12 k

Figure 2-8 Returning data from JavaScript functions

40 Ajox: A Beginner's Guide

Working with Variables

JavaScript lets you store your data in variables, which are placeholders in memory, set up

to hold that data. When you store data in variables, that data hangs around, ready for you to
use. You create variables with the JavaScript var statement; here’s an example, which creates
a variable named message, and stores the text “This text was stored in a variable.” in it, in
variable.html:

<html>
<head>
<title>Working with variables</title>

<script language="javascript"s>
var message = "This text was stored in a variable.";

function display ()

{

}

</scripts>
</heads>

<body onload="showMessage () ">
<hl>Working with variables</hl>

<input type="button" onclick="display ()" value="Click Here">

<div id="targetDiv">
</divs>

</body>
</html>

Now you can reference the message variable in code, as here, where we’re displaying the
message’s text in a <div> element (variable.html):

<html>
<head>
<titles>Working with variables</title>
<script language="javascript"s>

var message = "This text was stored in a variable.";

function display ()

Chapter 2: Getting o Know JavaScript 41

{
document.getElementById('targetDiv') .innerHTML = message
}
</scripts>
</heads>
<body onload="showMessage () ">

<hl>Working with variables</hl>

<input type="button" onclick="display ()" value="Click Here">

<div id="targetDiv">
</divs>

</body>
</html>

You can see variable.html at work in Figure 2-9. You just click the button and the message
will be fetched from the message variable and popped into the web page.

Besides storing text in variables, you can also store numbers, as in this example, where
we’ve modified the adder function to store the sum it calculates in a variable named sum, and
then return that sum:

<htmls>
<head>
<title>Returning data from functions</title>

<script language="javascript"s
function display ()
{
document .getElementById ("targetDiv") .innerHTML =
"6 + 6 = " + adder(6, 6);

‘2 Working with variables - Microsoft Internet Explorer

File Edit View Favorites Tools Help .-{.'
Qiack - O - ¥ A (2| Poearch rFavortes 8 | R- & W - L @& @ 3
Address @ http: fflocalhost fchapter2fvariable, html V| Go Links **

Working with variables

This text was stored in a vanable.

Figure 2-9 Storing data in variables

42 Ajox: A Beginner's Guide

function adder (operandl, operand2)

{
var sum = operandl + operand2;
return sum;
}
</scripts>
</head>
<body>
<hl>Returning data from functions</hl>
<input type="button" onclick="display ()" value="Click to add 6 + 6">

<div id="targetDiv">
</div>

</body>
</html>

There’s a difference between these two examples that you should know about. When you
create a variable outside any function, like this:

<script language="javascript"s
var message = "This text was stored in a variable.";

function display ()

{
}

</scripts>

document.getElementById('targetDiv') .innerHTML = message

then that variable is called a global variable, and can be used anywhere in your code, inside
functions or outside them. However, if you create a variable inside a function, like this:

function adder (operandl, operand2)
{

var sum = operandl + operand2;
return sum;

}

then that variable is called a local variable, and it can only be used and accessed inside the
same function.

Putting It All Together with Operators

You already know that you can add values using the + sign:

function adder (operandl, operand2)
var sum = operandl + operand2;
return sum;

}

Chapter 2: Getting to Know JavaScript

The plus sign, +, is the JavaScript addition operator. You can also subtract values with the
subtraction operator, —:

var value = operandl + operand2;

Or multiply values with the * operator:

var value = operandl * operand2;

Or divide values with the division operator, /:

var value = operandl / operand2;

There are many such operators already built into JavaScript. The whole list is provided in

Table 2-1.

Operator

Description

Arithmetic Operators

Adds two numbers.

+

++ Increments the value in a variable by one.

- Subtracts one number from another. Also can change the sign of its operand
like this: —variableName.

- Decrements the value in a variable by one.

* Multiplies two numbers.

/ Divides two numbers.

Evaluates to the remainder after dividing two numbers using integer division.

String Operators

+

Joins (concatenates) two strings.

+=

Joins (concatenates) two strings and assigns the joined string to the first
operand.

Logical Operators

&&

Evaluates to true if both operands are true; otherwise, evaluates to false.

Evaluates to true if either operand is true. However, if both operands are
fa|se, evaluates to false.

Evaluates to false if its operand is true, and to true if its operand if false.

Bitwise Operators

&

Sets a one in each bit position in which both operands’ bits are ones.

N

Sets a one in a bit position if the bits of one operand, but not both operands,
are one.

[
Table 2-1

Sets a one in a bit if either operand has a one in that position.

The JavaScript Operators

(continued)

43

44

Ajax: A Beginner's Guide

Operator Description

~ Flips each bit.

<< Shifts the bits of the first operand to the left by the number of places specified
by the second operand.

>> Shifts the bits of the first operand to the right by the number of places
specified by the second operand.

>>> Shifts the bits of the first operand to the riﬂht by the number of places
specified by the second operand, and shifts in zeros from the left.

Assignment Operators

= Assigns the value of the second operand to the first operand.

+= Adds two operands and assigns the result to the first operand.

—= Subtracts two operands and assigns the result o the first operand.

*= Multiplies two operands and assigns the result to the first operand.

/= Divides two operands and assigns the result to the first operand.

%= Calculates the modulus of two operands and assigns the result to the first
operand.

&= Performs a bitwise AND operation on two operands and assigns the result to
the first operand.

A= Performs a bitwise exclusive OR operation on two operands and assigns the
result to the first operand.

= Performs a bitwise OR operation on two operands and assigns the result to

the first operand.

<<= Performs a left-shift operation on two operands and assigns the result to the
first operand.

>>= Performs a sign-propagating right-shift operation on two operands and
assigns the result to the first operand.

>>>= Performs a zero-fill right-shift operation on two operands and assigns the

result to the first operand.

Comparison Operators

Evaluates to true if the two operands are equal to each other.

Evaluates fo true if the two operands are not equal to each other.

Evaluates fo true if the two opercmds are both equq| and of the same type.

Evaluates to true if the two operands are either not equal or not of the
same type.

> Evaluates to true if the first operand’s value is greater than the second
operand’s value.
>= Evaluates fo true if the first operand’s value is greater than or equal to the
second operand’s value.
Table 2-1 The JavaScript Operators (continued)

Chapter 2: Getting o Know JavaScript 48

Operator Description

< Evaluates to true if the first operand’s value is less than the second operand’s
value.

<= Evaluates to true if the first operand’s value is less than or equal to the
second operand’s value.

Special Operators

2 Performs an “if...else” test.

, Evaluates two expressions and returns the result of evaluating the second
expression.

delete Deletes an object and removes it from memory, or deletes an object's
property, or deletes an element in an array.

function Creates an anonymous function.

in Evaluates fo true if the property you're festing is supported by a specific
object.

instanceof Evaluates fo true if the given object is an instance of the specified type.

new Creates a new obiject from the specified object type.

typeof Evaluates to the name of the type of the operdnd.

void Allows evaluation of an expression without returning any value.

Table 2-1 The JavaScript Operators (continued)

Here’s an example. Say that you have five apples and three oranges:

var apples = 5;
var oranges = 3;

If you want to add your apples and oranges, you can perform the addition like this:

var apples = 5;
var oranges = 3;
var fruit = apples + oranges;

Now the variable named fruit holds 8; the = sign is called the assignment operator, and you

use it to assign values to variables. In fact, JavaScript gives you a shortcut with the compound
assignment operator +=, which both adds two values and assigns the result to a variable. For
example, if you want to add 3 to the value stored in a variable named temperature, you can do
that like this:

var temperature = 72;
temperature = temperature + 3;

Or, you could use the += shortcut like this:

var temperature = 72;
temperature += 3;

46 Ajax: A Beginner's Guide

Besides +=, there are also *=, —=, and other compound assignment operators, as you see
in Table 2-1.

Note the operators like ==, <, and > in Table 2-1. What are they for? They’re the comparison
operators, and they let you make decisions in your code (Is the temperature less than 72? Yes?
Time for a picnic!) with the if statement, coming up next.

Grooving with the if Statement

This if statement is the first statement we’ll see that lets you execute code depending on
whether or not a condition (that you set) is true. Here’s what the if statement looks like
formally (the parts in square brackets are optional, and you replace the parts in italics with
your own JavaScript):

if (condition)
statementsl
}

[else {
statements2
3

Let’s see an example to make this clear. Do you have more than $1,000,000 in your bank

account? If so, this next example will display the message “Time for a vacation!” (this is
if.html):

<html>
<head>
<title>Using the if statement</title>

<script language="javascript"s>

function display ()

{

var account = 2000000;
if (account > 1000000) {
document.getElementById('targetDiv') .innerHTML =
"Time for a wvacation!";

}
}

</script>
</head>
<body>
<h1>Using the if statement</hl>

<input type="button" onclick="display ()" value="Click Here">

Chapter 2: Getting to Know JavaScript

<div id="targetDiv">
</divs>

</body>
</html>

You can see the results in Figure 2-10, where it’s time for a vacation.
How does this code work? You start off by putting the number two million into a variable
named account:

var account = 2000000;

And then you check to see if account holds more than $1 million by using the > (greater
than) comparison operator:

var account = 2000000;
if (account > 1000000) {

}
If account is greater than one million (and it is), JavaScript executes the code in the curly
braces, which displays the text “Time for a vacation!”:

var account = 2000000;
if (account > 1000000)
document.getElementById('targetDiv') .innerHTML =
"Time for a vacation!";

}

And that’s the way if statements let you make decisions in your code, executing code or
not, depending on whether or not a condition is true.

A Using the if statement - Microsoft Internet Explorer,

File Edit View Favorites Tools Help ut.'
Qback ~ © - ¥ A 0| Poearch TrFavortes 8 | D- & W - L @ @ 3
Address @ http: fflocalhost fchapter2fif html V| Go Links **

Using the if statement

Tine for a vacation!

Figure 2-10 if. html

47

48 Ajax: A Beginner's Guide

Test the if Statement

Try your own version of the if.html example, creating a file named temperature.html. In your
version, create a variable named temperature and assign it a value. Then test to see if that value
is over 65, and if so, display the message “Time for a picnic!”

Using the else Statement

What if you don’t happen to have more than $1 million in the bank? In other words, what if
the condition you’re checking (account > 1000000) is false? If you want to execute code when
the if statement’s condition is false, you can add an else statement. For example, if you don’t
have $1 million in the bank, you might want to display the (rather harsh) message “Get back
to work!” You can do that by enclosing inside curly braces in an else statement (which must
follow an if statement) the code that you want to run if the if statement’s condition is false, like
this (this is else.html):

<html>
<head>
<title>Using the else statement</title>

<script language="javascript"s>

function display ()
{
var account = 500000;
if (account > 1000000)
document .getElementById ('targetDiv') .innerHTML
"Time for a vacation!";
} else {
document.getElementById('targetDiv') .innerHTML
"Get back to work!";

}
}

</script>
</head>
<body>
<h1>Using the else statement</hl>
<input type="button" onclick="display ()" value="Click Here">

<div id="targetDiv">
</divs>

</body>
</html>

Chapter 2: Getting to Know JavaScript 49

‘A Using the else statement - Microsoft Internet Explorer,

File Edit View Favorites Tools Help 't"
Qiack - O - ¥ A | Poearch rFavortes 8 | B- & W] - @& @ 3
Address @ http: fflocalhostfchapter2/else, html V| Go Links **

Using the else statement

Gret back to workc!

Figure 2-11 else.html

Note that we’ve changed the amount in the account variable (regretfully) to 500,000, so
you get the results shown in Figure 2-11 when you run this code. Ah well.

Test the else Statement

Try modifying your temperature.html file so that it can handle the case where the temperature
is less than 65 degrees. In that case, make your code display the message “Turn up the heat!”

Working with the Logical Operators

In this book, you’re also going to see the JavaScript logical operators at work. These
operators—you’re going to see the && (And) and Il (Or) operators in this book—connect two
or more conditions together. For example, if you want to say that if you have more than $1
million in the bank and your debts are less than $500,000, then it’s time for a vacation, you can
put together the two conditions (account > 1000000 and debt < 500000) with the And operator,
& &, like this (this is and.html):

<html>
<head>
<title>Using logical operators</title>

<script language="javascript"s

function display ()
{
var account = 2000000;
var debt = 100000;
if (account > 1000000 && debt < 500000) {
document .getElementById ('targetDiv') .innerHTML =

50 Ajox: A Beginner's Guide

"Time for a vacation!";
} else {

document .getElementById ('targetDiv') .innerHTML
"Get back to work!";

}
}

</scripts>
</heads>

<body>

<h1>Using logical operators</hls>

<input type="button" onclick="display ()" value="Click Here">

<div id="targetDiv">
</divs>

</body>
</html>

You can see the results in Figure 2-12, where it’s time for a vacation.

Test the Or Operator

The Or operator Il (two upright bars) lets you check whether one of a number of conditions is
true. For example, the expression a Il b Il ¢ is true if any one of a or b or c is true.

Use the Or operator to check if the temperature is less than 65 or more than 85, and if so,
display the message ‘“Please adjust the temperature.”

& | Using logical operators - Microsoft Internet Explorer

File Edit View Favorites Tools Help

Address @ http: fflocalhost fchapter2fand. html

Using logical operators
[ClickHere [y

Timne for a vacation!

Figure 2-12 and.html

Chapter 2: Getting to Know JavaScript 81

Now we’re cooking with JavaScript; let’s continue by taking a look at some looping
constructs, starting with the for loop.

Over and Over with the for Loop

Computers are great at performing tasks over and over again (that’s part of their charm—they
can do the grunt work). One of the ways JavaScript lets you perform tasks over and over

is with the for loop, which you can use to execute code multiple times (such as displaying
“Happy Birthday!” 25 times for a 25-year-old). Here’s what the for loop looks like formally
speaking (as before, the parts in square brackets are optional, and you replace the parts in
italics with your own JavaScript):

for (linitial-expression]; [condition]; lincrement-expression]) ({
statements

You usually use a for loop with a loop index, also named a loop counter. A loop index is
a variable that keeps track of the number of times the loop has been executed. In the initial-
expression part, you usually set the loop index to a starting value; in the condition part, you
test that value to see if you still want to keep on looping; and the increment-expression lets you
increment the loop counter.

Here’s an example, for.html. This example adds the numbers from 1 to 100—something
you’d probably be pleased to let a computer do rather than add up all the numbers yourself.
In this case, you want the computer to loop 100 times, which you can do with a for loop and
a loop index variable like this:

var loopIndex;

for (loopIndex = 1; loopIndex <= 100; loopIndex++) {

}
In this loop, the variable loopIndex starts at 1, and at the end of each time through the loop,
1 is added to loopIndex with the expression loopIndex++, because the JavaScript ++ operator
increments the variable you apply it to by one (the -- operator decrements the variable you
apply it to by 1). And the loop above stops when the value in loopIndex is greater than 100
(that is, the loop keeps looping while loopIndex <= 100).
So to add the numbers from 1 to 100, you just have to add this code:

var loopIndex;
var total = 0;

for (loopIndex = 1; loopIndex <= 100; loopIndex++) {
total += loopIndex;

}

52 Ajox: A Beginner's Guide

Here’s what it looks like in a web page, for.html:

<html>
<head>

<title>Using the for loop</title>
<script language="javascript"s>
function display ()

{

var loopIndex;
var total = 0;

for (loopIndex = 1; loopIndex <= 100; loopIndex++) {
total += loopIndex;
}

document.getElementById('targetDiv') .innerHTML =
"The total of 1 to 100 is " + total;
}

</script>
</head>
<body>
<h1>Using the for loop</hls>

<input type="button" onclick="display ()" value="Click Here">

<div id="targetDiv">
</div>

</body>
</html>

You can see the results in Figure 2-13, where we learn the numbers from 1 to 100 sum
to 5050.

Test the for Loop

The for loop is a great one, and the most essential of all the loops to know. Give this exercise a

try: set a variable named age to a person’s age, then have your code display “Happy Birthday!”
once for each year of the person’s age.

Chapter 2: Getting to Know JavaScript 83

‘A Using the for, loop - Microsoft Internet Explorer,

File Edit View Favorites Tools Help
Qiack ~ O - ¥ A 0| Poearch Trravartes 8 | D- & W - L @B @ 3

Address @ http: fflocalhostfchapter2{for, html V| Go Links **

Using the for loop
[_Click Here T

The total of 1 to 100 18 5050

Figure 2-13 for.html

Keep on Looping with the while Loop

The while loop is like the for loop in many ways, but it is designed to simply keep looping
while a condition is true:

while (condition) {
statements
}

In other words, this loop keeps executing the statements in the loop’s body while the loop’s
condition is true.

Here’s an example. In this case, we’re going to use a while loop together with an array
of students to locate a specific student. An array is just like a collection of variables that you
can index with a numerical index, and it’s a handy construct to store multiple data elements.
In fact, because you can address the elements in an array with a numerical index, arrays are
perfect for use with loops, because you can increment a numerical index with a loop.

Let’s get to the code to see how this works. In this case, we’ll store the names of eight
students, so we’ll need to create an array that holds eight elements, which you do like this:

var students = new Array(8);

Now you’re free to assign names to each element in the array. You address a particular
element in the array by giving the array’s name (students) followed by the numerical index of
the element you want to reach, inside square brackets (like students[5]). The numerical index
for arrays starts at 0, so you can assign names to all the elements in the array like this:

var students = new Array(8);

students[0] = "George";
students[1] = "E4";
students[2] = "Stella";

54

Ajax: A Beginner's Guide

students [3] = "Ted";
students[4] = "Liz";
students[5] = "Cary";
students[6] = "Nancy";
students[7] = "Zack";

Okay, now say that you want to see where Nancy is in the students array. You can do that
with a while loop like this, where we keep looping until we find Nancy:

var loopIndex = 0;

while (students[loopIndex] != "Nancy" && loopIndex <
students.length - 1) {
loopIndex++;

}

The expression students.length returns the number of total elements in the array, so setting
up the while loop this way makes it loop until loopIndex is incremented to students.length — 1,
or 7, unless Nancy is found at an earlier index.

If, at the end of this while loop, the variable loopIndex is less than or equal to the index of
the last element in the array (which is students.length — 1), then we found Nancy, and we can
report that fact this way (in while.html):

<html>
<head>
<title>Using the while loop</titlex>

<script language="javascript"s

function display ()

{

var loopIndex = 0, students = new Array(6);

students[0] = "George";

students[1] = "Ed4";

students [2] = "Stella";

students [3] = "Ted";

students[4] = "Liz";

students[5] = "Cary";

students[6] = "Nancy";

students[7] = "Zack";

while (students[loopIndex] != "Nancy" && loopIndex <
students.length - 1) {
loopIndex++;

}

Chapter 2: Getting to Know JavaScript

if (loopIndex <= students.length - 1){
document.getElementById('targetDiv') .innerHTML =
"T found Nancy at student location " + loopIndex;

}
else {
document.getElementById('targetDiv') .innerHTML =
"T did not find Nancy.";
}
}
</scripts>
</heads>
<body>

<h1>Using the while loop</hl>
<input type="button" onclick="display ()" value="Click Here">

<div id="targetDiv">
</divs>

</body>
</html>

NOTE

A shortcut was used to set up two variables here, looplndex and the students array,
which were declared like this, all in a single line: var loopindex = 0, students = new

Array(6);.

And you can see the results in Figure 2-14, where we found Nancy at index 6 in the
students array.

A Using the while loop - Microsoft Internet Explorer

File Edit View Favorites Tools Help
Qeiak ~ O - ¥ A 0| Poearch rFavartes 8 | R- & W - L @& @ 3
Address @ http: fflocalhost fchapter2 fwhile, html V| Go Links *

Using the while loop

I found Mancy at student location &

Figure 2-14 while.html

55

56

Ajax: A Beginner's Guide

Which Browser Does the User Have?

It can be very important for the Ajax programmer to know which browser the user has, because
the browser is the way you communicate with the user, and different browsers have different
capabilities (for example, Internet Explorer has a scrolling <marquee> element that Firefox
doesn’t have).

You can use JavaScript in your Ajax-enabled web pages to determine which browser the
user has. To do that, you check the text string in the built-in navigator object’s userAgent
property (which you access in JavaScript as navigator.userAgent). In JavaScript, text strings
are actually objects with their own properties and methods, and to search a text string, you can
use the string’s indexOf method, which returns the index of a substring you’re searching for
in the main string (that is, the position the substring starts at in the main string, where the first
character is character 0). If the substring is not found in the main string, indexOf will return a
negative value.

So, for example, to see if the browser identification string held in navigator.userAgent
contains the text "Firefox" you could check the return value of the expression navigator
.userAgent.indexOf("Firefox")—if it’s non-negative, the string navigator.userAgent contains
the word "Firefox".

Besides the navigator.userAgent string, there’s also another string, navigator.appName, that
this page, browser.html, uses. The navigtor.appName string lets browser.html make the first
determination of the browser type—if it holds "Netscape", you’re dealing with Firefox
(or Netscape Navigator), and if it holds "MSIE", you’re dealing with Microsoft Internet Explorer.

Here’s what browser.html looks like (browser.html):

<htmls>
<head>
<title>
What browser do you do have?
</title>

<script language="javascript"s>
var begin, end

function display ()
{
if (navigator.appName == "Netscape") ({
if (navigator.userAgent.indexOf ("Firefox") > 0)
begin = navigator.userAgent.indexOf ("Firefox") +
"Firefox".length + 1;
end = navigator.userAgent.length;
document .getElementById ("targetDiv") .innerHTML =
"You are using Firefox " +
navigator.userAgent.substring (begin, end) ;

Chapter 2: Getting to Know JavaScript

if (navigator.appName == "Microsoft Internet Explorer") {

begin = navigator.userAgent.indexOf ("MSIE ") +
"MSIE ".length;
if (navigator.userAgent.indexOf (";", begin) > 0) {

end = navigator.userAgent.indexOf (";", begin) ;
} else {

end = navigator.userAgent.indexOf (")", begin)

+ 2;

}

document .getElementById ("targetDiv") .innerHTML =
"You are using Internet Explorer " +
navigator.userAgent.substring (begin, end);

}
}

</scripts>
</head>

<body>
<hl>Determining browser type and version</hl>

<input type="button" onclick="display ()" value="Click Here">

<div ID="targetDiv"s></div>
</body>
</html>

And you can see the results in Figure 2-15, where browser.html is correctly identifying
Internet Explorer. And in Figure 2-16, it’s identifying Firefox.

‘2 What browser do you do have? - Microsoft Internet Explorer

File Edit View Favorites Tools Help
Qback ~ & - ¥ A (0| Poearch rFavortes 8 | R- & W - L @& @ 3

Address @ http: fflocalhostfchapter2/browser,html V| Go Links **

Determining browser type and version

Tou are using Internet Explorer 6.0

Figure 2-15 Determining browser type: Internet Explorer

57

58 Ajox: A Beginner's Guide

©) What browser do you do have? - Mozilla Firefox |:||§|r>__<|
File Edit Wiew Go Bookmarks Tools Help o :

<E| - E> - % @ |D http: fflocalhostfchapter2/browser html V| @ Go “Q, |

’ Getting Started El Latest Headlines

Determining browser type and version

‘Click Here!
Tou are using Firefox 1.0.6

Figure 2-16 Determining browser type: Firefox

Use browser.html

Make sure you understand how the JavaScript browser.html works. If you do, you’ve come far
in a single chapter on JavaScript! Get browser.html to work in your own browser.

Chapter 3

Creating Ajax
Applications

59

60 Ajax: A Beginner's Guide

Key Skills & Concepts

Creating XMLHttpRequest objects

Configuring XMLHttpRequest objects

Handling data downloads from the server using anonymous functions
Fetching text data from the server

Passing data to the server using Ajax and the GET and PUT HTTP methods
Fetching XML data from the server and decoding that data

Fetching XML data from the server by passing data to the server

It’s time to start talking Ajax, and we’re going to do that by taking apart a working Ajax
application piece by piece. You got a brief glimpse in Chapter 2 of the application we’re going
to examine in this chapter, ajax.html. You can see it at work in Figure 3-1.

When you click the button labeled “Fetch the message,” ajax.html will fetch the contents
of a file named data.txt from the server, shown here,

Welcome to Ajax!

and display that text in the web page, as you see in Figure 3-2.

A An Ajax example - Microsoft Internet Explorer.

File Edit View Favorites Tools Help '1.
Qback ~ O - ¥ A 0| Poearch rFavartes 8 | D- & W - L @& @ 3
Address @ http: fflocalhost fchapter 3/ ajax:, html V| Go Links **

An Ajax example

[Fetch the message]

The fetched message will appear here.

Figure 3-1 The ajax.html example

Chapter 3: Creating Ajax Applications 61

A An Ajax example - Microsoft Internet Explorer.

File Edit View Favorites Tools Help

Qiack - © - ¥ A (0| Poearch TrFavartes 8 | D- & W - L @& @ 3

Address @ http: fflocalhost fchapter 3/ ajax:, html V| Go Links **

An Ajax example

[Fetch the message Q{J

“Welcome to Ajal

Figure 3-2 ajax.html fetching data from the server

This example is a true Ajax example—it fetches data from the server behind the scenes,
using Ajax, and updates its web page in the browser without causing a page refresh.

Here’s what ajax.html looks like—we’re going to take this Ajax-enabled web page apart in
this chapter, piece by piece:

<htmls>
<head>
<title>An Ajax example</title>

<script language = "javascript"s>
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;
}

function getData (dataSource, divID)

if (XMLHttpRequestObject)
var obj = document.getElementById(divID) ;
XMLHttpRequestObject.open ("GET", dataSource) ;

XMLHttpRequestObject.onreadystatechange = function()

62

Ajax: A Beginner's Guide

{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200)
obj.innerHTML = XMLHttpRequestObject.responseText;
}

}

XMLHttpRequestObject.send (null) ;

}
}

</script>
</head>
<body>

<H1>An Ajax example</H1>

<form>
<input type = "button" value = "Fetch the message"
onclick = "getData('data.txt', 'targetDiv')">
</form>

<div id="targetDiv">
<p>The fetched message will appear here.</p>
</div>

</body>
</html>

Get ajax.html to Work

To get anywhere in this chapter, it’s important that you can get ajax.html to run. As mentioned
in Chapter 2, you must place ajax.html and data.txt on a web server that you can access

with your browser. Just putting those files onto your hard disk and then opening them with a
browser isn’t going to work, because Ajax has to interact with a true web server, one that can
send data behind the scenes on request.

So make sure you can get ajax.html to run now. Copy ajax.html and data.txt from the
chapter3 directory in the downloadable code for this book. Place those two files into a
directory on a web server—for example, you might use your ISP’s web server if you already
host web pages there. Or you might even have a web server set up on your own computer. In
either case, make sure you get the results you see in Figure 3-2.

Chapter 3: Creating Ajax Applications

Taking ajax.html Apart

It’s time to see what makes ajax.html tick. You can recognize the outline of a basic web page
in ajax.html by removing the Ajax parts, giving you this basic page with <head> and <body>
parts, and a <div> element in the <body> to display the data fetched from the server:

<html>
<head>
<title>An Ajax example</titles>

</heads>
<body>

<H1>An Ajax example</H1>

<div id="targetDiv">
<p>The fetched message will appear here.</p>
</div>

</body>
</html>

There’s also a button in ajax.html, and when the user clicks that button, the browser calls
the JavaScript function getData to get the Ajax part of the page rolling:

<html>
<head>
<title>An Ajax example</title>

</head>
<body>

<H1>An Ajax example</H1l>

<form>
<input type = "button" value = "Fetch the message"
onclick = "getData('data.txt', 'targetDiv')">

</form>

63

64 Ajox: A Beginner's Guide

<div id="targetDiv">
<p>The fetched message will appear here.</p>
</div>

</body>
</html>

Creating the JavaScript

Two data items are passed to the JavaScript getData function: the name of the file to read on
the server (data.txt), and the ID of the <div> element (targetDiv) in which to display the text
fetched from the server. We can create the getData function to read both data items like this in
a <script> element:

<html>
<head>
<title>An Ajax example</title>

<script language = "javascript">
function getData(dataSource, divID)

{

}

</script>
</head>

<body>

</body>
</html>

The first order of business in the JavaScript getData function is to check if we’ve been
successful in creating the XMLHttpRequest object that ajax.html will use to communicate with
the server. The XMLHttpRequest object that we’re going to create is the basis of Ajax—it lets
JavaScript code communicate with the server and download data from the server. This object
will be stored in a global variable named XMLHttpRequestObject:

<html>
<head>
<title>An Ajax example</titles>

<script language = "javascript"s>
var XMLHttpRequestObject = false;

Chapter 3:

function getData (dataSource, diviID)

{

}

</script>
</head>

<body>

</body>
</html>

Creating Ajax Applications 65

In the getData function, we use an if statement to check if we’ve been successful in
creating an XMLHttpRequest object—and if not, the if statement will fail, meaning that we
don’t attempt to use Ajax to contact the server (note that the variable XMLHttpRequestObject
is initialized to false, meaning that unless we are successful in creating an XMLHttpRequest

object, the if statement will fail):

<html>
<head>
<title>An Ajax example</titles>

<script language = "javascript"s>
var XMLHttpRequestObject = false;

function getData (dataSource, divID)

{

if (XMLHttpRequestObject) {

}
}

</scripts>
</head>

<body>

</body>
</html>

So how do we create the XMLHttpRequest object?

66 Ajax: A Beginner's Guide

Creating the XMLHtpRequest Object

We’re going to add code to ajax.html to create the XMLHttpRequest object that we’re going to
use to communicate with the server as soon as ajax.html is loaded by the browser. That means
placing that code outside the getData function, which is only called when the user clicks the
button.

So how do you create an XMLHttpRequest object? That object is built into the browser,
but you access it in different ways, depending on what browser ajax.html is running in.
Netscape Navigator (version 7.0 and later), Apple Safari (version 1.2 and later), and Firefox let
you create XMLHttpRequest objects directly with code like this:

XMLHttpRequestObject = new XMLHttpRequest () ;

In those browsers, the XMLHttpRequest object can be accessed through the browser
window object, and you can check if the window object can be used in this way by checking
if window. XMLHttpRequest exists. If it does, you’re dealing with Netscape Navigator,
Firefox, or Apple Safari, and can create an XMLHttpRequest object and store it in the variable
XMLHttpRequestObject in this way:

<html>
<head>
<title>An Ajax example</title>

<script language = "javascript"s>
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;

}

function getData (dataSource, divID)

{

if (XMLHttpRequestObject) {

}
}
</scripts>
</heads>

<body>

</body>
</html>

Chapter 3: Creating Ajax Applications 67

But what if you’re dealing with Internet Explorer? In that case, you can create an
XMLHttpRequest object by using this JavaScript:

XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP") ;

And how does ajax.html determine that it is dealing with Internet Explorer? In that case,
window.XMLHttpRequest doesn’t exist—but window.ActiveXObject does, which means you
can use this code to create an XMLHttpRequest object in Internet Explorer:

<html>
<head>
<title>An Ajax example</title>

<script language = "javascript"s>
var XMLHttpRequestObject = false;

if (window.XMLHttpRegquest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft.XMLHTTP") ;
}

function getData (dataSource, divID)

{

if (XMLHt tpRequestObject) {

)
)

</script>
</head>

<body>

</body>
</html>

Okay, that creates the XMLHttpRequest object we’ll use to communicate with the server
behind the scenes. Although the XMLHttpRequest object supported in different browsers
differs, for nearly all Ajax work, you use the same basic properties and methods of this object—
and thankfully, those basic properties and methods are the same in the different browsers.

You can see the properties of the Internet Explorer XMLHttpRequest object in Table 3-1,
and its methods in Table 3-2. The properties of this object for Mozilla, Netscape Navigator,
and Firefox appear in Table 3-3, and the methods in Table 3-4. Apple hasn’t published a full
version of the properties and methods for its XMLHttpRequest object yet, but it has published
a set of commonly used properties, which appear in Table 3-5, and commonly used methods,
which appear in Table 3-6.

68

Ajax: A Beginner's Guide

Property Description

onreadystatechange Contains the name of the event handler that should be called when the
value of the readyState property changes. Read/write.

readyState Contains state of the request. Read-only.

responseBody Contains a response body, which is one way HTTP responses can be
returned. Reacﬁonly.

responseStream Contains a response stream, a binary stream to the server. Read-only.

responselext Contains the response body as a string. Read-only.

responseXML Contains the response body as XML. Read-only.

status Contains the HTTP status code returned by a request. Read-only.

statusText Contains the HTTP response status text. Read-only.

Table 3-1 XMLHttpRequest Object Properties for Internet Explorer

Method

Description

abort

Aborts the HTTP request.

getAllResponseHeaders

Returns all the HTTP headers.

getResponseHeader Returns the value of an HTTP header.

open Opens a request fo the server.

send Sends an HTTP request to the server.
setRequestHeader Sets the name and value of an HTTP header.

Table 3-2 XMLHttpRequest Object Methods for Internet Explorer

Property Description

channel Contains the channel used to perForm the request. Reqd-on|y.
readyState Contains the state of the request. Read-only.

responseText Contains the response body as a string. Read-only.
responseXML Contains the response body as XML. Read-only.

status Contains the HTTP status code returned by a request. Read-only.
statusText Contains the HTTP response status text. Read-only.

Table 3-3 XMLHtpRequest Object Properties for Mozilla, Firefox, and Netscape Navigator

Method

Chapter 3: Creating Ajax Applications

Description

abort

Aborts the HTTP request.

getAllResponseHeaders

Returns all the HTTP headers.

getResponseHeader Returns the value of an HTTP header.
openRequest Native (nonscript) method to open a request.
overrideMimeType Overrides the MIME type the server returns.

Table 3-4 XMLHttpRequest Object Methods for Moxzilla, Firefox, and Netscape Navigator

Property Description

onreadystatechange Contains the name of the event handler that should be called when the
value of the readyState property changes. Read/write.

readyState Contains state of the request. Read-only.

responselext Contains the response body as a string. Read-only.

responseXML Contains the response body as XML. Read-only.

status Contains the HTTP status code returned by a request. Read-only.

statusText Contains the HTTP response status text. Read-only.

Table 3-5 XMLHttpRequest Obiject Properties for Apple Safari

Method

Description

abort

Aborts the HTTP request.

getAllResponseHeaders

Returns all the HTTP headers.

getResponseHeader Returns the value of an HTTP header.

open Opens a request to the server.

send Sends an HTTP request to the server.
setRequestHeader Sets the name and value of an HTTP header.

Table 3-6 XMLHtpRequest Object Methods for Apple Safari

69

70 Ajox: A Beginner's Guide

Now that we have an XMLHttpRequest object, what do we do with it? You can start

by opening it, which lets you configure it in preparation for connecting to the server and
downloading data.

Opening the XMLHtpRequest Object

When ajax.html first loads in the browser, it tries to create an XMLHttpRequest object. When
the user clicks the button to fetch data from the server using Ajax, the getData function is

called, and the first thing it does is check whether an XMLHttpRequest object was created
successfully:

<script language = "javascript"s
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;
}

function getData (dataSource, divID)

{

if (XMLHttpRequestObject) {

}
}

</script>

In case an XMLHttpRequest object couldn’t be created, you can add code to explain to the
user that their browser can’t do Ajax, as follows:

function getData (dataSource, divID)

{

if (XMLHttpRequestObject) {

}

else {

var obj = document.getElementById(divID) ;

obj.innerHTML = "Sorry, your browser is not Ajax-enabled.";

}
}

Chapter 3: Creating Ajax Applications

It’s time to open the XMLHttpRequest object. Doing so lets you configure the
XMLHttpRequest object with, for example, the URL that it is to contact when you connect to the
server. Here’s how you use the XMLHttpRequest object’s open method in general (as always,

items in square brackets are optional, and items in italics are placeholders that you fill in yourself):

open ("method", "URL"[, asyncFlagl[, "userName"[, "password"ll])

The following table explains what the various arguments mean:

method The HTTP method used to open the connection, such as GET, POST, PUT, HEAD,
or PROPFIND.

URL The requested URL.

asyncFlag A Boolean value indicating whether the call is asynchronous. The default is true.

userName The username of your account.

password The password used to connect to your account.

The following code shows how ajax.html uses the XMLHttpRequest object’s open method.

In this case, it uses the HTTP GET method to contact the server (that’s the normal way of
contacting servers—we’ll see more about that later in this chapter, in the discussion of another
option, the POST method), and passes the URL of the file it’s looking for, which is passed to
the getData function as the dataSource argument.

function getData (dataSource, diviID)

{

if (XMLHttpRequestObject)

XMLHttpRequestObject.open ("GET", dataSource) ;

}
}
Using the open method like this configures the XMLHttpRequest object—it does not connect,

or open, any connection to the server. The actual connection process is coming up in a few pages.
Note that the URL that the XMLHttpRequest object has been configured to access is simply

the name of a file, data.txt, as you see here in the call made to getData when the button is clicked:

<body>

<H1>An Ajax example</H1>

<form>
<input type = "button" value = "Fetch the message"
onclick = "getData('data.txt', 'targetDiv')">

</form>

71

72 Ajox: A Beginner's Guide

<div id="targetDiv">
<p>The fetched message will appear here.</p>
</div>

</body>

Referring to a file in this way will only work if the file (data.txt) is in the same directory as
the web page (ajax.html) itself. In other words, if you simply give a filename, the browser will
assume that file is to be found in the same directory as the web page the browser is currently
displaying.

Now say that the data.txt file is in data, a subdirectory of the directory that contains
ajax.html. In that case, you can refer to data.txt in a relative way as data/data.txt (you use a
forward slash, /, on web servers, not the backward slash that you use in Windows to indicate
subdirectories):

<body>

<H1>An Ajax example</Hl>

<form>
<input type = "button" value = "Fetch the message"
onclick = "getData('data/data.txt', 'targetDiv')">
</form>

<div id="targetDiv">
<p>The fetched message will appear here.</p>
</div>
</body>
You can also give a complete URL for the data you want to fetch, like this:

<body>

<H1>An Ajax example</H1>

<form>
<input type = "button" value = "Fetch the message"
onclick = "getData('http://www.starpowder.com/data.txt',
'targetDiv') ">
</form>

<div id="targetDiv">
<p>The fetched message will appear here.</p>
</div>

</body>

Chapter 3: Creating Ajax Applications

And the URL need not be the URL of a file either—it could be any web resource, such as a
PHP script (as you’re going to see soon in this book, PHP is a programming language that runs
on web servers and lets you take control of the HTML and data you send back to browsers):

<body>

<H1>An Ajax example</H1l>

<form>
<input type = "button" value = "Fetch the message"
onclick = "getData('http://www.starpowder.com/data.php’,
'targetDiv') ">
</form>

<div id="targetDiv">
<p>The fetched message will appear here.</p>
</div>

</body>

However, here’s one thing to note: if the URL you connect to, such as http://www
.starpowder.com/data.php, and the Ajax-enabled page (ajax.html here) that’s attempting to
download that URL are on different servers, you’re going to have a security problem. If your
Ajax-enabled page attempts to download data behind the scenes from a different server, your
browser is going to suspect that something underhanded is going on, and will ask permission
from the user, via a dialog box, before proceeding.

Making the user respond to a dialog box, however, is not exactly Ajax’s idea of doing things
unobtrusively, behind the scenes. We’ll see how to get around this restriction in Chapter 4.

To keep it simple, the examples in this book mostly download data from the same web
server directory that the Ajax-enabled HTML page itself is in.

Now you’ve configured the XMLHttpRequest object. The next step is to get ready for the
data download.

Getting Ready for the Data Download

The A in Ajax stands for asynchronous, which means that you don’t sit around waiting for
the Ajax download to happen. While the download is going on, the browser can be doing
other things—interacting with the user, for example. That means that Ajax needs to signal the
browser when the data has been downloaded and is ready to be used, and that happens with a
callback function. That’s a function that Ajax calls when your data is downloading, or has been
completely downloaded. How do you tell Ajax which function you want to call?

You tell the XMLHttpRequest object. That object has a property named onreadystatechange
that you assign the callback function to. As an example of how it might work, suppose you have

http://www.starpowder.com/data.php
http://www.starpowder.com/data.php

74 Ajox: A Beginner's Guide

a callback function simply named callback. Here’s how you could have the XMLHttpRequest
object call that function, by assigning that function to the onreadystatechange property:

function getData (dataSource, divID)

{

if (XMLHttpRequestObject)
XMLHttpRequestObject.open ("GET", dataSource) ;

XMLHttpRequestObject.onreadystatechange = callback()

1
1
function callback()

{

}

Now when there’s a change in the status of the data you’re downloading, such as when the
downloading is complete, the callback function will be called.

This works, but in Ajax, you usually take a shortcut with an anonymous function—one
without any name. You can create an anonymous function simply with the keyword function,
followed by the arguments passed to that function enclosed in parentheses (there aren’t any
arguments here), followed by the body of the function, enclosed in curly braces. Here’s what
that looks like in ajax.html:

function getData (dataSource, divID)

{

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", dataSource) ;

XMLHttpRequestObject.onreadystatechange = function()

{

}
}

So what’s going to happen here is that when there’s a change in the status of the data the
XMLHttpRequest object is downloading, the anonymous function is going to be called, which
means that the code in the curly braces following the function keyword will be executed.

Chapter 3: Creating Ajox Applications 78

Inside the anonymous function, we need to check on the data that’s been downloaded:
Is the download complete? Are we ready to use that data? You can determine that with two
properties of the XMLHttpRequest object: readyState and status.

The readyState property tells you how the data downloading is going. Here are the possible
values for this property—a value of 4 is what you want to see, because that means the data has
been fully downloaded:

0 Uninitialized
1 Loading

2 Loaded

3 Interactive

4 Complete

The status property is the property that contains the actual status of the download. This is
actually the normal HTTP status code that you get when you try to download web pages. For
example, if the data you’re looking for wasn’t found, you’ll get a value of 404 in the status
property. Here are some of the possible values—note that you’ll want to see a value of 200
here, which means that the download completed normally:

200 OK

201 Created

204 No Content

205 Reset Content

206 Partial Content

400 Bad Request

401 Unauthorized

403 Forbidden

404 Not Found

405 Method Not Allowed
406 Not Acceptable

407 Proxy Authentication Required
408 Request Timeout

411 Length Required

76 Ajox: A Beginner's Guide

413 Requested Entity Too Large
414 Requested URL Too Long
415 Unsupported Media Type
500 Internal Server Error

501 Not Implemented

502 Bad Gateway

503 Service Unavailable

504 Gateway Timeout

505 HTTP Version Not Supported

We’ll start handling the downloaded data by checking the readyState property.

Using the readyState Property

The readyState property lets you know the state of the download, and we want to wait until the
value of this property equals 4, which means the download is complete. Here’s what that looks
like in the anonymous function:

function getData (dataSource, divID)

{

if (XMLHttpRequestObject)
XMLHttpRequestObject.open ("GET", dataSource) ;

XMLHttpRequestObject.onreadystatechange = function()

{

if (XMLHttpRequestObject.readyState ==

}
}

Okay, if we’re executing code inside this if statement, we know that the data download
was completed. But was it completed successfully, or was there an error? To check that, you
have to examine the status property.

Chapter 3: Creating Ajax Applications 77

Using the status Property

The status property holds the HTTP code that corresponds to the status of the data transfer. We
want to see a value of 200, which means that the data transfer was OK. Here’s how we make
sure that the XMLHttpRequest object’s status property holds a value of 200:

function getData (dataSource, divID)

{

if (XMLHttpRequestObject)
XMLHttpRequestObject.open ("GET", dataSource) ;

XMLHttpRequestObject.onreadystatechange = function()

{

if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {

}
}

Now we’ve verified that the data we fetched from the server using Ajax was completed
successfully. How do we display the fetched data?

Displaying the Fetched Data
The HTML ID of the <div> element we want to display the downloaded data in is passed to
the getData function and named divID:

function getData (dataSource, divID)

{

}

We can create an object named obj corresponding to that <div> element in this way:

function getData (dataSource, diviID)
{
if (XMLHttpRequestObject) {
var obj = document.getElementById(divID) ;
XMLHttpRequestObject.open ("GET", dataSource) ;

78 Ajox: A Beginner's Guide

XMLHttpRequestObject.onreadystatechange = function()
{

if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {

}
}

Now that we’ve downloaded the data to display successfully, how do we recover that data
from the XMLHttpRequest object and display that data in the <div> element? You can recover
the text that was downloaded from the XMLHttpRequest object’s responseText property.

That property is where the XMLHttpRequest object stores downloaded plain text (if you’re
downloading XML, as we will later in this chapter, the property you read that XML from is
named responseXML).

So here’s how we display the text that we downloaded in the <div> element:

function getData (dataSource, divID)

{
if (XMLHttpRequestObject)
var obj = document.getElementById(divID) ;
XMLHttpRequestObject.open ("GET", dataSource) ;

XMLHttpRequestObject.onreadystatechange = function()
{

if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
obj.innerHTML = XMLHttpRequestObject.responseText;

}
}

That’s great—now we’re ready to handle the data download from the server. Why just
“ready” to handle the data download? Because we haven’t actually initiated the download,
that’s why. How do we actually connect to the server to start the actual download process?

Connecting to the Server

It turns out that all we’ve done to this point is to get ready to connect to the server using Ajax.
We’ve created the XMLHttpRequest object, configured it with its open method, and set up a
callback function where we check on the download and display the downloaded text. But we
haven’t actually connected to the server and gotten the whole download process started yet.

Chapter 3: Creating Ajax Applications

How do you connect to the server? That depends on the HTTP method you’re using to
connect. In this example, we’re using the GET method, so you call the XMLHttpRequest
object’s send method, passing it a value of null, which is JavaScript’s placeholder for a value
of nothing (you pass different arguments when you’re using the POST HTTP method to
connect to the server). That looks like this in ajax.html:

function getData (dataSource, diviID)

{

if (XMLHttpRequestObject) {
var obj = document.getElementById(divID) ;
XMLHttpRequestObject.open ("GET", dataSource) ;

XMLHttpRequestObject.onreadystatechange = function()

{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200)
obj.innerHTML = XMLHttpRequestObject.responseText;
}

}

XMLHttpRequestObject.send (null) ;

}
}

And presto—you’re done! Now you’ve completed ajax.html, and when you load it into
your browser and click the button, the page uses Ajax to communicate with the server and
download text data. Cool.

We’ve been able to download the text from a file, data.txt, and display it. On the other
hand, just downloading the same file all the time might get a little boring. Why not have some
data on the server that can change? That’s where server-side programming comes in.

Adding Some Server-Side Programming

To do a little programming on the server, we’re going to use PHP, the server-side language
(that is, a language that runs on the web server, not on the user’s machine) that has become
the most popular choice with Ajax developers. Using PHP, which is formally introduced in
Chapter 9, we’ll get the server to send back data that varies, as opposed to just getting the
contents of the same file, data.txt, all the time.

The PHP equivalent of data.txt is data.php, a PHP script that will send a message back to
the browser. To follow along here, you’re going to need a PHP-enabled server, as discussed in
depth in Chapter 9. We start data.php with this markup, which indicates to the server that this
is a PHP script, and should be executed as such:

<?php

?>

80 Ajox: A Beginner's Guide

A http:#localhost/chapter3/data.php - Microsoft Internet Explorer

File Edit View Favorites Tools Help .-I',"
Qbxk - @ - [F @ .;b O Search <7 Favorites 42 (- = @ LB 93
Address @ http: fflocalhostfchapter3fdata. php V| Go Links **

Thus text comes to you thanks to PHP.

Figure 3-3 data.php

To actually send text back to the browser, we can use the PHP echo statement:

<?php
echo 'This text comes to you thanks to PHP.';
?>

There you go—simple. You can see data.php at work in a browser (no Ajax involved yet)
in Figure 3-3.
Now let’s get the text that data.php sends back to the browser—this time using Ajax

techniques. To do that, you simply have to change the accessed URL from data.txt to data.php
like this (this is ajax2.html):

<html>
<head>
<title>An Ajax example using PHP</title>

<script language = "javascript"s>
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;
}

function getData (dataSource, diviID)

{

if (XMLHttpRequestObject) {
var obj = document.getElementById(divID) ;
XMLHttpRequestObject.open ("GET", dataSource) ;

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {

Chapter 3: Creating Ajax Applications

obj.innerHTML = XMLHttpRequestObject.responseText;

}
}

XMLHttpRequestObject.send (null) ;
}
}

</scripts>
</heads>
<body>

<H1>An Ajax example using PHP</H1>

<form>
<input type = "button" wvalue = "Fetch the message"
onclick = "getData('data.php', 'targetDiv')">
</form>

<div id="targetDiv">
<p>The fetched message will appear here.</p>
</divs>

</body>
</html>

Is that it? Yep, that’s it. Now you’re accessing data.php using Ajax instead of accessing
data.txt. You can see ajax2.html in Figure 3-4.

Now when you click the button, Ajax is used behind the scenes to fetch the data returned
by data.php, as you can see in Figure 3-5.

A An Ajax example using PHP - Microsoft Internet Explorer

File Edit View Favorites Tools Help
Qback ~ O - ¥ A (0| Poearch rFavartes 8 | D- & W - L @& @ 3
Address @ http: fflocalhostfchapter 3/ ajax2, html V| Go Links **

An Ajax example using PHP

L Fetch the message]

The fetched message will appear here.

Figure 3-4 qjax2.html

81

82

Ajax: A Beginner's Guide

A An Ajax example using PHP - Microsoft Internet Explorer |:||§|r>__<|
File Edit View Favorites Tools Help 't.'
Qeiack - O - ¥ A (0| Poearch rFavortes 8 | R- & W - L @& @ 3
Address @ http: fflocalhostfchapter 3/ ajax2, html V| Go Links **

An Ajax example using PHP

[Fetch the message QA

Thus text comes to you thanks to PHP.

Figure 3-5 Accessing data.php with ajax2.html

Get ajax2.html to Work

Got a server that can run PHP? There are plenty on the Internet, and you can download PHP to
your own computer if you want, as discussed in Chapter 9. If you can execute PHP in a server,
give ajax2.html a try.

To do that, put ajax2.html and data.php into the same directory (changing the protection
of data.php so that it can be executed on your server, if needed), and navigate to ajax2.html in
your browser. Hopefully, you’ll see the page shown in Figures 3-4 and 3-5.

We’re not going to use PHP in depth until Chapter 9, because we’ll be working on the various
skills involved in Ajax until then. But if you want to work with Ajax, it’s important to be able to
perform server-side programming—and the most common combination is Ajax and PHP.

Okay, now we’ve been successful in reading text from data.php, which is fun—but in time,
it’s going to get boring, because that text never changes. How about actually inferacting with
the server by sending data to it? In the next two sections, we are going to look at two means of
communicating with the server, the HTTP GET method and the HTTP POST method, starting
with the former.

Sending Data fo the Server Using GET

Communicating with the server is at the heart of what Ajax does, and in order to make the
server respond to what you’ve sent it, you need to be able to use some form of programming
on the server. In this section, we’ll create a PHP script named dataresponder.php that you can
send data to.

Chapter 3: Creating Ajax Applications 83

If you send dataresponder.php a value of 1, it will send back the text “The server got a
value of 1,” and if you send a value of 2, the script will send back the text “The server got a
value of 2.”

Sending Data with URL Encoding

The GET method lets you send text data to the server by appending that text to the end of the
URL you use to access the server. For example, if you want to send the name Steve to the
server, you pass “Steve” as the value of an argument, just as with a JavaScript function. We
might name that argument “name,” and here is how you’d assign “Steve” to the argument
“name” and send everything to the server using the HTTP GET method (note that you use a
question mark to separate your data from the navigation part of the URL):

http://www.server.com/script.php?name=Steve

On the server, your PHP script can ask to get the value corresponding to the “name”
argument, and it’ll be passed the value “Steve.”

What if you want to pass two or more data items to the server? You separate the data you
want to pass into argument/value pairs (that is, as “argument=value”) and separate those pairs
with an ampersand, &. Here’s an example:

http://www.server.com/script.php?firstname=Steve&lastname=Holzner

What if the data you want to send includes spaces? You can’t include spaces in a URL.
Instead, you replace the spaces with plus signs (+). Here’s an example:

http://www.server.com/script.php?name=Steve+Holzner

Adding data to a URL like this is called URL encoding, and it lets you send your data to
the server (as long as that data is text). However, note that the text you send is part of the (very
public) URL you’re accessing, so privacy is nonexistent with the GET method. The POST
method, which encodes the data you’re sending in the HTTP headers in the request sent to the
server, does a better job of keeping things private (as discussed in “Sending Data to the Server
Using POST” later in the chapter).

So this means that we can send a value of 1 to the dataresponder.php script like this, where
we’re naming the argument sent to the server data, and assigning data a value of 1:

http://www.server.com/dataresponder.php?data=1
To send a value of 2 to the server, you could do this:
http://www.server.com/dataresponder.php?data=2

Now we need to write our PHP script, dataresponder.php, to read the argument named
“data,” and respond by sending the right text back to the browser, “The server got a value of 17
or “The server got a value of 2.”

84

Ajax: A Beginner's Guide

Writing the PHP

We start dataresponder.php with the usual PHP markup, indicating that this is a PHP script that
is meant to be executed by the server:

<?php

Now we need to access the “data” argument sent to us via the GET method. PHP includes
a special array named $_GET that lets you recover data sent to your PHP scripts via the GET
method. All you have to do is to use the name of the argument whose value you want as the
index in the $_GET array. In other words, to recover the value of the argument named “data”
sent to dataresponder.php, you only have to use $_GET|["data"].

Okay, now we have the data sent to us from the web page, and need to see if that data
is a 1 or a 2. PHP’s syntax is in many ways similar to JavaScript’s, so we can use a PHP if
statement to check if "data" holds 1 or 2 (note that == is the equality comparison operator in
PHP, just as it is in JavaScript):

<?php
if ($ GET["data"] == "1") {

At this point, then, we know that we were passed a value of 1, so we can send back the
confirmation message “The server got a value of 1” to the browser with the PHP echo statement:

<?php
if ($_GET["data"] == "1") {
echo 'The server got a value of 1';

}

Conversely, if we were sent a value of 2,

<?php
if ($ GET["data"] == "1") {
echo 'The server got a value of 1';

}

if ($_GET["data"] == "2") {

Chapter 3: Creating Ajax Applications

}

?>
then we can send back the message “The server got a value of 2” to the browser:
<?php

if ($_GET["data"] == "1") {
echo 'The server got a value of 1';
}

if ($_GET["data"] == "2") {
echo 'The server got a value of 2';
}

?>

You can test dataresponder.php in a browser with a URL like this, sending it a value of 1:

http://www.server.com/dataresponder.php?data=1

And you can see the results in Figure 3-6, where dataresponder.php correctly identified the
value sent to it.

Swell, we are all set with dataresponder.php. Now we’ve got to write the Ajax-enabled
page that will interact with it.

Interacting with dataresponder.php

Let’s write the Ajax-enabled page, ajax3.html, that interacts with dataresponder.php. We’re
going to need two buttons here: one to send a value of 1 to dataresponder.php, and the other
to send a value of 2. Here’s what the first button—the button we use to send a value of 1 to
dataresponder.php—Ilooks like in HTML.:

<form>
<input type = "button" value = "Fetch message 1"

</form>

2 http://localhostichapter3/dataresponder. php?data=1 - Microsoft Internet Explorer

File Edit W¥iew Favorites Tools Help u‘,‘t
Qoxx - © B E G| Poewen rrovets @3- @ DB D3
Address @http:|l’ﬂuca|host,l’chq)tcl'IJ,l’dntarca:onder,php?dnta—l VEGD Links *

The server got a value of |

Figure 3-6 Testing dataresponder.php

85

86 Ajax: A Beginner's Guide

We can use this button to call the getData function that we’ve already seen in ajax.html.
You pass two arguments to getData—the URL to download data from, and the ID of the <div>
element to display the results in, so we can add this to the button:

<form>
<input type = "button" value = "Fetch message 1"
onclick = "getData('dataresponder.php', 'targetDiv')">
</form>

That’s not complete, though—we need to pass a value of 1 to dataresponder.php, and we
can use URL encoding to do that by changing the URL to dataresponder.php?data=1:

<form>
<input type = "button" value = "Fetch message 1"
onclick = "getData('dataresponder.php?data=1', 'targetDiv')">
</form>

That takes care of the first button. The second button is similar except for the caption and
the URL it calls, dataresponder.php?data=2 (this is ajax3.html):

<html>
<head>
<title>Sending Data to the Server</title>

<script language = "javascript"s>
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;
}

function getData (dataSource, diviID)

{

if (XMLHttpRequestObject) {
var obj = document.getElementById(divID) ;
XMLHttpRequestObject.open ("GET", dataSource) ;

XMLHttpRequestObject .onreadystatechange = function()

{

if (XMLHttpRequestObject.readyState == 4 &&

Chapter 3: Creating Ajax Applications

XMLHttpRequestObject.status == 200)
obj.innerHTML = XMLHttpRequestObject.responseText;
}
}
XMLHttpRequestObject.send (null) ;
}
}
</scripts>
</heads>
<body>

<hl>Sending Data to the Server</hl>

<form>
<input type = "button" value = "Fetch message 1"
onclick = "getData ('dataresponder.php?data=1', 'targetDiv')">
<input type = "button" value = "Fetch message 2"
onclick = "getData ('dataresponder.php?data=2', 'targetDiv') ">
</form>

<div id="targetDiv">

<p>The fetched message will appear here.</p>
</divs>

</body>
</html>

You can see ajax3.html at work in Figure 3-7, where the user has clicked the first button,
and the server responded correctly.

‘A Sending Data to the Server - Microsoft Internet Explorer,

File Edit View Favorites Tools Help -"1"
Qback -~ O - ¥ A (0| Poearch rFavortes 8 | D- & W] - @ @ 3
Address @ http: fflocalhostfchapter 3/ ajax: 3. html V| Go Links **

Sending Data to the Server

[Fetch message 1 RJ[Fetch message 2]

The server got a value of 1

Figure 3-7 qjax3.html sending 1 to the server

87

88 Ajax: A Beginner's Guide

‘A Sending Data to the Server - Microsoft Internet Explorer,

File Edit View Favorites Tools Help i.'
Qback ~ & - ¥ A (| Poearch rFavartes 8 | @- & W - L @& @ 3
Address @ http: fflocalhostfchapter 3/ ajax: 3. html V| Go Links **

Sending Data to the Server

[Fetch message 1] [Fetch message 2 k]

The server got a value of 2

Figure 3-8 ajax3.html sending 2 to the server

If the user clicks the second button, a value of 2 is sent to the server, and the appropriate
message comes back, as you see in Figure 3-8. Cool.

Sending Data to the Server Using POST

The GET method is only one way to send data to the server—there are other methods, including
the POST method, which we’ll take a look at now. The POST method offers more security,
because the data you send to the server is not URL-encoded, out there for everyone to see.

Writing the PHP

Now that we’ve created the PHP script dataresponder.php, creating a PHP script that you can
POST to is easy. All you have to do is to change the $_GET array in dataresponder.php,

<?php
if ($ GET["data"] == "1") {
echo 'You sent the server a value of 1';

}
if ($ GET["data"] == "2") {
echo 'You sent the server a value of 2';

}

?>
to the $_POST array in a new PHP script, dataresponderpost.php:

<?php
if ($_PosST["data"] == "1") {
echo 'You sent the server a value of 1';

}
if ($_PosST["data"] == "2") {
echo 'You sent the server a value of 2';

}

?>

Chapter 3: Creating Ajax Applications

As you may have guessed, the $_POST array lets you read data that was sent to your
PHP script using the POST method, instead of the GET method. Let’s take a look at the Ajax-
enabled page, ajax4.html, that interacts with dataresponderpost.php on the server. Starting
from the Ajax-enabled web pages that we’ve already created in this chapter, how do you set
things up to send data via POST to the server?

Interacting with dataresponderpost.php

The first step seems clear—you have to change this line in the getData function,

function getData (dataSource, divID)

{

if (XMLHttpRequestObject) {
var obj = document.getElementById(divID) ;
XMLHttpRequestObject.open ("GET", dataSource) ;

}
to this, where we’re using the POST method:

function getData (dataSource, divID)

{

if (XMLHttpRequestObject) {
var obj = document.getElementById(divID) ;
XMLHttpRequestObject.open ("POST", dataSource) ;

}

Next, to enable sending data via POST, you also have to set an HTTP request header,
Content-Type, to "application/x-www-form-urlencoded". Even if you don’t know what that
means, just make sure you include this code:

function getData (dataSource, divID)
{
if (XMLHttpRequestObject) {
var obj = document.getElementById(divID) ;
XMLHttpRequestObject.open ("POST", dataSource) ;
XMLHttpRequestObject.setRequestHeader ('Content-Type',
'application/x-www-form-urlencoded') ;

90 Ajox: A Beginner's Guide

So far so good. Now we can handle the data we want to send to dataresponderpost.php.
When we used the GET method, we just URL-encoded the data like this in the calls to
getData:

<body>

<hl>Sending Data to the Server</hl>

<form>
<input type = "button" value = "Fetch message 1"
onclick = "getData('dataresponder.php?data=1', 'targetDiv')">
<input type = "button" value = "Fetch message 2"
onclick = "getData('dataresponder.php?data=2', 'targetDiv')">
</form>

<div id="targetDiv">
<p>The fetched message will appear here.</p>
</div>

</body>

With the POST method, you can’t do URL encoding directly like this. But we still need
to pass a 1 or a 2 to the getData function, so let’s add a third argument to the getData call—an
argument named data. In the getData function, the data argument will hold 1 or 2, depending
on which button was clicked:

<script language = "javascript"s>
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP") ;

}

function getData(dataSource, divID, data)
{
if (XMLHttpRequestObject) {
var obj = document.getElementById(divID) ;
XMLHttpRequestObject.open ("POST", dataSource) ;
XMLHttpRequestObject.setRequestHeader ('Content-Type',
'application/x-www-form-urlencoded') ;

}
}
</script>
</head>

Chapter 3: Creating Ajax Applications

<body>

<Hl>Sending Data to the Server With POST</H1>

<form>
<input type = "button" value = "Fetch message 1"
onclick = "getData('dataresponderpost.php', 'targetDiv',6 1)">
<input type = "button" value = "Fetch message 2"
onclick = "getData('dataresponderpost.php', 'targetDiv',6 2)">
</form>

<div id="targetDiv">
<p>The fetched message will appear here.</p>
</div>

</body>

Now we have to send the data using POST in the getData function. We first add the standard
callback function so the data that’s downloaded from the server can be handled correctly:

function getData (dataSource, divID, data)
{
if (XMLHttpRequestObject)
var obj = document.getElementById(divID) ;
XMLHttpRequestObject.open ("POST", dataSource) ;
XMLHttpRequestObject.setRequestHeader ('Content-Type',
'application/x-www-form-urlencoded') ;

XMLHttpRequestObject.onreadystatechange = function()

if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
obj.innerHTML = XMLHttpRequestObject.responseText;

}
}

And we’re ready to send the data via the POST method. To do that, you use the
XMLHttpRequest object’s send method. In the other Ajax web pages in this chapter, which
used the GET method, this line is how we connected to the server using the send method:

function getData (dataSource, diviID)
{
if (XMLHttpRequestObject) {
var obj = document.getElementById(divID) ;
XMLHttpRequestObject.open ("GET", dataSource) ;

92 Ajox: A Beginner's Guide

XMLHttpRequestObject.onreadystatechange = function()

{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
obj.innerHTML = XMLHttpRequestObject.responseText;
}
}

XMLHttpRequestObject.send (null) ;

}
}

Now, however, instead of sending a value of null, you send the data you want to send via
POST in a URL-encoded string. In this case, that string is "data=1" or "data=2" depending on
what the getData function’s data argument holds. So we can send our data to the server in this
way, using the XMLHttpRequest object’s send method:

function getData (dataSource, divID, data)
{
if (XMLHttpRequestObject)
var obj = document.getElementById(divID) ;
XMLHttpRequestObject.open ("POST", dataSource) ;
XMLHttpRequestObject.setRequestHeader ('Content-Type',
'application/x-www-form-urlencoded') ;

XMLHttpRequestObject.onreadystatechange = function()

{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200)
obj.innerHTML = XMLHttpRequestObject.responseText;
}
}

XMLHttpRequestObject.send ("data=" + data);

}
}

Here’s all of ajax4.html for reference:

<html>
<head>

<title>Sending Data to the Server With POST</title>

<script language = "javascript"s>
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {

Chapter 3: Creating Ajax Applications

XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP") ;

}

function getData (dataSource, divID, data)
{
if (XMLHttpRequestObject) {
var obj = document.getElementById(divID) ;
XMLHttpRequestObject.open ("POST", dataSource) ;
XMLHttpRequestObject .setRequestHeader (' Content-Type',
'application/x-www-form-urlencoded') ;

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200)
obj.innerHTML = XMLHttpRequestObject.responseText;
}

}

XMLHttpRequestObject.send ("data=" + data) ;
}
}

</scripts>
</heads>

<body>

<Hl>Sending Data to the Server With POST</H1>

<form>
<input type = "button" value = "Fetch message 1"
onclick = "getData ('dataresponderpost.php', 'targetDiv',6 1)">
<input type = "button" value = "Fetch message 2"
onclick = "getData ('dataresponderpost.php', 'targetDiv',6 2)">
</form>

<div id="targetDiv">

<p>The fetched message will appear here.</p>
</divs>

</body>
</html>

And you can see ajax4.html at work in Figures 3-9 and 3-10, where it’s able to
communicate with the server via POST.

93

94 Ajox: A Beginner's Guide

Figure 3-9

A Sending Data to the Server With POST - Microsoft Internet Explorer |4
File Edit View Favorites Tools Help l"

Qiack - O - ¥ A (| Poearch rFavartes 8 | D- & W - @& @ 3
Address @ http: fflocalhostfchapter 3/ ajax:d. html V| Go Links **

Sending Data to the Server With POST

[Fetch message 1 R{][Fetch message 2]

The server got a value of 1

ajax4.html sending 1 to the server

2l Sending Data to the Server With POST - Microsoft Internet Explorer ad
File Edit View Favorites Tools Help '1.

Qback - O - ¥ A (| Poearch rFavortes 8 | D- & W - @& @ 3
Address @ http: fflocalhostfchapter 3/ ajax:d. html V| Go Links **

Sending Data to the Server With POST

[Fetch message 1] [Fetch message 2 %

The server got a value of 2

Figure 3-10 ajax4.html sending 2 to the server

Now we’ve seen how to work with asynchronous downloads, the A in Ajax. So far, we’ve
only dealt with plain text sent from the server, but Ajax can also handle XML, the X in Ajax.
It’1l take a little more work, as it turns out, to handle that XML in JavaScript (that’s the topic of

Chapter 6), but we can get an introduction right now.

Using Ajax Together with XML

Say that you have a very important XML document, colors.xml (which lists the colors red,
green, and blue), that you want to download. As with any XML document, colors.xml starts

with an XML declaration (more on this in Chapter 6):

<?xml version = "1.0" ?>

Chapter 3: Creating Ajax Applications

All XML documents need a document element—that is, a single element that contains all
the other elements in the document. In this case, let’s call the document element <colors>:

<?xml version = "1.0" ?>
<colors>

</colors>

The <colors> element will contain three <color> elements, each with a color in it, red,
green, and blue:

<?xml version = "1.0" ?>
<colors>
<color>red</color>
<color>green</color>
<color>blue</color>
</colors>

That’s the XML document, colors.xml, we want to fetch and decode using Ajax in a new
example, colors.html, which appears in Figure 3-11. When you click the Fetch the Colors
button in colors.html, colors.xml is downloaded, decoded, and the colors—red, green, and
blue—are displayed.

The colors.html document starts off much like the other Ajax examples you’ve seen in this
chapter, with a button that calls a JavaScript function named getData and a <div> element in
which to display the results:

<body>

<h1l>Using Ajax with XML</hl>

& | Using Ajax with XML - Microsoft Internet Explorer.

File Edit View Favorites Tools Help 't"
Qback ~ & - ¥ A (0| Poearch TrFavartes 8 | R- & W - L @B @ 3
Address @ http: fflocalhost fchapter3fcolors, html V| Go Links **

Using Ajax with XML

The list of colors will appear here.

Figure 3-11 colors.html

95

96 Ajox: A Beginner's Guide

<form>
<input type = "button" value = "Fetch the Colors"
onclick = "getData('colors.xml', 'targetDiv')">

</form>

<div id="targetDiv" width =100 height=100>
The list of colors will appear here.</div>

</body>
In the <script> element, we start by creating the XMLHttpRequest object we’ll use:
<script language = "javascript"s
var colors;
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new ActiveXObject ("Microsoft .XMLHTTP") ;

}

</scripts>

In the Firefox/Mozilla brand of browsers, you also have to specify that you’re going to be
downloading XML, not plain text. To do that, you use this line of code, which sets the MIME
type of the download to text/xml (there’s a MIME type for every major data format):

<script language = "javascript"s>
var colors;
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
XMLHttpRequestObject.overrideMimeType ("text/xml") ;

} else if (window.ActiveXObject) {
XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP") ;

}

</script>

Chapter 3: Creating Ajax Applications 97

Now we can write the getData function. In this function, we check if the XMLHttpRequest
object was created, and if so, open it:

function getData (dataSource, divID)

{

if (XMLHttpRequestObject)
XMLHttpRequestObject.open ("GET", dataSource) ;

}
}

Next, we can add the anonymous callback function, and check the status and readyState
properties of the download:

function getData (dataSource, divID)

{

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", dataSource) ;
var obj = document.getElementById(divID) ;

XMLHttpRequestObject.onreadystatechange = function()

{

if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {

}
}

If we’re executing code inside this if statement, the download went okay. So how do we
get our XML data? Do we use the XMLHttpRequest object’s responseText property? Nope—
we use the XMLHttpRequest object’s responseXML property, which holds a JavaScript XML
document object (that’s the subject of Chapter 6):

function getData (dataSource, diviID)

{

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", dataSource) ;

XMLHttpRequestObject.onreadystatechange = function()

98 Ajox: A Beginner's Guide

{

if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200)
var xmlDocument = XMLHttpRequestObject.responseXML;

}
}

You’ll see more about handling XML document objects in Chapter 6, but we can dissect
the object passed to us here with a little code. To start, you can get an array of the <color>
elements from the XML document with the document’s getElementsByTagName method.
We’ll create an array named colors that way:

function getData (dataSource, divID)

{

if (XMLHttpRequestObject)
XMLHttpRequestObject.open ("GET", dataSource) ;

XMLHttpRequestObject.onreadystatechange = function()

{

if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200)
var xmlDocument = XMLHttpRequestObject.responseXML;
colors = xmlDocument.getElementsByTagName ("color") ;

}
}

Now we can prepare to list the fetched colors by displaying a message “Here are the
fetched colors:” in the target <div> element; we’ll also start an unordered list with a
HTML tag so the colors appear in a bulleted list:

function getData (dataSource, diviID)

{

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", dataSource) ;
var obj = document.getElementById(divID) ;

XMLHttpRequestObject.onreadystatechange = function()

Chapter 3: Creating Ajax Applications

{

if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200)
var xmlDocument = XMLHttpRequestObject.responseXML;
colors = xmlDocument.getElementsByTagName ("color") ;
obj.innerHTML = "Here are the fetched colors:";

}
}

Now we can loop over the colors array to extract the three colors:

function getData (dataSource, divID)
{
if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", dataSource) ;
var obj = document.getElementById(divID) ;

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
var xmlDocument = XMLHttpRequestObject.responseXML;
colors = xmlDocument.getElementsByTagName ("color") ;

obj.innerHTML = "Here are the fetched colors:";

for (loopIndex =0; loopIndex < colors.length; loopIndex++)
{

}

}
}

We can refer to the current <color> element in this for loop as colors[loopIndex]. Does that
mean we can simply display colors[loopIndex] to display the current color every time through

the loop? Nope, we have to extract the colors from the <color> elements specifically. Here’s
what the <color> elements look like:

<?xml version = "1.0" ?>
<colors>
<color>red</color>

100 Ajox: A Beginner's Guide

<color>green</color>
<color>blue</color>
</colorss>

The text inside each <color> element is considered a fext node in XML. And we can access
that text node as colors[loopIndex].firstChild, because the text node is the first child of each
<color> element.

Great, does that mean we can display each color as colors[loopIndex].firstChild? Nope,
because in JavaScript, a text node is an object, not just text. To actually extract the text from
the text node, you have to use the text node’s data property like this: colors[loopIndex]
firstChild.data. So we can add each color to the bulleted list using a list item HTML tag, ,
and then end the bulleted list with like this:

function getData (dataSource, divID)

{
if (XMLHttpRequestObject) {

XMLHttpRequestObject.open ("GET", dataSource) ;

var obj = document.getElementById (divID) ;

XMLHttpRequestObject.onreadystatechange = function/()

{

if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
var xmlDocument = XMLHttpRequestObject.responseXML;
colors = xmlDocument.getElementsByTagName ("coloxr") ;
obj.innerHTML = "Here are the fetched colors:";
for (loopIndex =0; loopIndex < colors.length; loopIndex++)
{
obj.innerHTML += "" +
colors[loopIndex] .firstChild.data + "</1li>";
}
obj.innerHTML += "";
1
}
1
}

We’re finally ready to connect to the server using the XMLHttpRequest object’s send
method. Since we’re using the GET method, we can just pass a value of null to that method:

function getData(dataSource, diviID)

{

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", dataSource) ;
var obj = document.getElementById(divID) ;

XMLHttpRequestObject.onreadystatechange = function()

{

if (XMLHttpRequestObject.readyState == 4 &&

Chapter 3: Creating Ajax Applications 101

XMLHttpRequestObject.status == 200) {
var xmlDocument = XMLHttpRequestObject.responseXML;
colors = xmlDocument.getElementsByTagName ("color") ;

obj.innerHTML = "Here are the fetched colors:<uls";
for (loopIndex =0; loopIndex < colors.length; loopIndex++)
{

obj.innerHTML += "<lis>" +
colors[loopIndex] .firstChild.data + "";

}

obj.innerHTML += "";

XMLHttpRequestObject.send (null) ;
1
1

And that completes colors.html, which you can see here for reference:

<htmls>
<head>

<title>Using Ajax with XML</titles>
<script language = "javascript"s>
var colors;
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
XMLHttpRequestObject.overrideMimeType ("text/xml") ;

} else if (window.ActiveXObject) ({
XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP") ;

function getData(dataSource, diviID)
{
if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", dataSource) ;
var obj = document.getElementById (divID) ;

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200)
var xmlDocument = XMLHttpRequestObject.responseXML;
colors = xmlDocument.getElementsByTagName ("color") ;
obj.innerHTML = "Here are the fetched colors:<uls>";
for (loopIndex =0; loopIndex < colors.length; loopIndex++)

102 Ajox: A Beginner's Guide

obj.innerHTML += "" +
colors[loopIndex] .firstChild.data + "";

}

obj.innerHTML += "";

}
}

XMLHttpRequestObject.send (null) ;

}
}

</scripts>
</head>

<body>

<hl1>Using Ajax with XML</hl>

<form>
<input type = "button" value = "Fetch the Colors"
onclick = "getData('colors.xml', 'targetDiv')">

</form>

<div id="targetDiv" width =100 height=100>
The list of colors will appear here.</divs>

</body>

</html>

And you can see the results in Figure 3-12, which shows that clicking the button fetches
the XML in the colors.xml document, decodes it, and displays the colors in a bulleted list.

& | Using Ajax with XML - Microsoft Internet Explorer.

File Edit View Favorites Tools Help
Qiack - O - ¥ A @] Poearch rFavartes 8 | R- & W - L @B @ 3

Address @ http: fflocalhost fchapter3fcolors, html V| Go Links **

Using Ajax with XML

Fetch the Colors k

Here are the fetched colors:

e red
» green
* blue

Figure 3-12 Downloading XML using Ajax

Chapter 4

Full Throttle Ajax

103

104

Ajax: A Beginner's Guide

Key Skills & Concepts

Handling multiple XMLHttpRequest requests

Using two XMLHttpRequest requests

Using an array of XMLHttpRequest requests

Using inner functions and multiple XMLHttpRequest requests
Handling JavaScript sent from the server

Overcoming browser caching

This chapter gets us into some serious Ajax. Chapter 3 gave us our start with Ajax, and this
chapter takes it from there, delving deep into the topic. One of the primary topics we’ll take
alook at in this chapter is how to work with multiple XMLHttp requests in the same page—
that is, if you have multiple buttons that use Ajax to connect to the server, what happens if one
request isn’t finished before the user clicks another button? When Ajax returns, which request
is returning the data? We’ll handle how to work with multiple XMLHttp requests in the same

page here.

We’ll also see that besides downloading plain text and XML, you can also download other
character-based data, such as JavaScript, which turns out to be a common thing to download
using Ajax. For example, connecting to some Google applications yourself in code, such as
Google Suggest (see Chapter 1), involves downloading JavaScript.

And there’s more Ajax in this chapter as well—how to overcome browser caching,
handling the HTTP headers you can download with Ajax, and more. We’ll start by looking
at the case where having multiple XMLHttpRequest objects in the same page creates the
possibility of a mix-up.

Handling Multiple XMLH#pRequest Obijects
in the Same Page

Perhaps you recall the example from Chapter 3 in which we communicated with a PHP script
on the server, dataresponder.php. When you clicked button 1, a value of 1 was sent to the
server, which sent that value back, as you see in Figure 4-1.

When you clicked button 2, a value of 2 was sent to the server, which sent that value back.
So far so good.

But now say that the user gets impatient, and clicks buttons at random. The problem is
that the application uses only one XMLHttpRequest object, but now that object is being asked

Chapter 4: Full Throttle Ajax

A Using a Single XMLHttpRequest Object - Microsoft Internet Explorer

File Edit View Favorites Tools Help 't"
Qback -~ © - ¥ A (| Poearch rFavortes 8 | @- & W] - [@& @ 3
Address @ http: fflocalhost fchapterd/single. html V| Go Links **

Using a Single XMLHttpRequest Object

[Fetch message 1 %J[Fetch message 2]

The server got a value of 1

Figure 4-1 single.html at work

to send multiple requests to the server. And depending on how fast or slow the server is, the
responses could get mixed up—the user could even click button 1, and then button 2, and see
the response from clicking button 1 if the server returned the responses out of order.

That out-of-order possibility comes about because the application uses only one
XMLHttpRequest object, even though the user might make multiple requests. You can see the
problem in the code, which just uses one XMLHttpRequest object (this is single.html, which
has been renamed ajax3.html from the previous chapter):

<html>
<head>
<title>Sending Data to the Server</title>

<script language = "javascript"s>
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest() ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft.XMLHTTP") ;
}

function getData(dataSource, divID)

{
if (XMLHttpRequestObject) {
var obj = document.getElementById(divID) ;
XMLHttpRequestObject.open ("GET", dataSource) ;

105

106 Ajox: A Beginner's Guide

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
obj.innerHTML = XMLHttpRequestObject.responseText;

}
}

XMLHttpRequestObject.send (null) ;

}
}

</script>
</head>
<body>

<hl>Sending Data to the Server</hl>

<form>
<input type = "button" value = "Fetch message 1"
onclick = "getData ('dataresponder.php?data=1', 'targetDiv') ">
<input type = "button" value = "Fetch message 2"
onclick = "getData ('dataresponder.php?data=2', 'targetDiv') ">
</form>

<div id="targetDiv">
<p>The fetched message will appear here.</p>
</div>

</body>
</html>

And here’s the server-side code, dataresponder.php:

<?php
if ($_GET["data"] == "1") {
echo 'The server got a value of 1';

}
if ($_GET["data"] == "2") {
echo 'The server got a value of 2';

Okay, so the question becomes, how do you handle multiple XMLHttpRequest requests at
more or less the same time? Our first solution is the obvious one—use two XMLHttpRequest
objects.

Chapter 4: Full Throttle Ajax 107

Using Two XMLH#pRequest Objects

There are two buttons in single.html, but only one XMLHttpRequest object, which can lead to
getting the responses mixed up. How about we create two XMLHttpRequest objects, one for
each button?

That’s just what we’ll do in a new example, double.html. First, we create one XMLHttpRequest
object, XMLHttpRequest1:

<html>
<head>
<title>Using Two XMLHttpRequest Objects</title>

<script language = "javascript"s>
var XMLHttpRequestObjectl = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObjectl = new XMLHttpRequest() ;
} else if (window.ActiveXObject) {
XMLHttpRequestObjectl = new
ActiveXObject ("Microsoft.XMLHTTP") ;

Next, we create a new version of the getData function, getDatal, that uses this
XMLHttpRequest object:

<html>
<head>
<title>Using Two XMLHttpRequest Objects</title>

<script language = "javascript"s>
var XMLHttpRequestObjectl = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObjectl = new XMLHttpRequest () ;
} else if (window.ActiveXObject)
XMLHttpRequestObjectl = new
ActiveXObject ("Microsoft .XMLHTTP") ;
}

function getDatal (dataSource, divID)

{
if (XMLHttpRequestObjectl) {
var obj = document.getElementById(divID) ;
XMLHttpRequestObjectl.open ("GET", dataSource) ;

XMLHttpRequestObjectl.onreadystatechange = function()

108 Ajax: A Beginner's Guide

{

if (XMLHttpRequestObjectl.readyState == 4 &&
XMLHttpRequestObjectl.status == 200) {
obj.innerHTML = XMLHttpRequestObjectl.responseText;
}

}

XMLHttpRequestObjectl.send (null) ;

}
}

Next, we create a second new XMLHttpRequest object, XMLHttpRequest2:

<html>
<head>
<title>Using Two XMLHttpRequest Objects</title>

<script language = "javascript"s>
var XMLHttpRequestObjectl = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObjectl = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObjectl = new
ActiveXObject ("Microsoft .XMLHTTP") ;

}

var XMLHttpRequestObject2 = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject2 = new XMLHttpRequest();
} else if (window.ActiveXObject) {
XMLHttpRequestObject2 = new
ActiveXObject ("Microsoft.XMLHTTP") ;

}

function getDatal (dataSource, divID)

{

if (XMLHttpRequestObjectl) ({
var obj = document.getElementById(divID) ;
XMLHttpRequestObjectl.open ("GET", dataSource) ;

XMLHttpRequestObjectl.onreadystatechange = function()

{

if (XMLHttpRequestObjectl.readyState == 4 &&

Chapter 4: Full Throttle Ajax

XMLHttpRequestObjectl.status == 200)
obj.innerHTML = XMLHttpRequestObjectl.responseText;

}
}

XMLHttpRequestObjectl.send (null) ;
}
}

Then, we add another version of the getData function, getData2, which uses
XMLHttpRequest2:

<html>
<head>
<title>Using Two XMLHttpRequest Objects</title>

<script language = "javascript"s>
var XMLHttpRequestObjectl = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObjectl = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObjectl = new
ActiveXObject ("Microsoft .XMLHTTP") ;

}
var XMLHttpRequestObject2 = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject2 = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject2 = new
ActiveXObject ("Microsoft .XMLHTTP") ;

}

function getDatal (dataSource, divID)
{
if (XMLHttpRequestObjectl) {
var obj = document.getElementById(divID) ;
XMLHttpRequestObjectl.open ("GET", dataSource) ;

XMLHttpRequestObjectl.onreadystatechange = function/()

{
if (XMLHttpRequestObjectl.readyState == 4 &&
XMLHttpRequestObjectl.status == 200)

109

110 Ajax: A Beginner's Guide

obj.innerHTML = XMLHttpRequestObjectl.responseText;
}
}

XMLHttpRequestObjectl.send (null) ;
}
}

function getData2(dataSource, divID)

{
if (XMLHttpRequestObject2) {
var obj = document.getElementById(divID) ;
XMLHttpRequestObject2.open ("GET", dataSource);
XMLHttpRequestObject2.onreadystatechange = function/()
{
if (XMLHttpRequestObject2.readyState == 4 &&
XMLHttpRequestObject2.status == 200) {
obj.innerHTML = XMLHttpRequestObject2.responseText;
}
}
XMLHttpRequestObject2.send (null) ;
}
}

That’s fine—now we’ve created two XMLHttpRequest objects and two getData functions
to handle them. All that remains is to connect one button to getDatal and the other button to
getData2 (this is double.html):

<body>

<hl>Using Two XMLHttpRequest Objects</hl>

<form>
<input type = "button" value = "Fetch message 1"
onclick = "getDatal ('dataresponder.php?data=1', 'targetDiv')">
<input type = "button" value = "Fetch message 2"
onclick = "getData2 ('dataresponder.php?data=2', 'targetDiv')">
</form>

<div id="targetDiv">
<p>The fetched message will appear here.</p>
</div>

</body>
</html>

Chapter 4: Full Throtfle Ajax 111

‘A Using Two XMLHttpRequest Objects - Microsoft Internet Explorer |:||E

File Edit View Favorites Tools Help
Qback - O - ¥ A | Poearch rFavartes 8 | R- & W - L @& @ 3
Address @ http: fflocalhost fchapterd/double, html V| Go Links **

Using Two XMLHttpRequest Objects

[Fetch message 1] [Fetch message 2 k]

The server got a value of 2

Figure 4-2 double. html

And we’re done. You can test double.html. Clicking either button will download the
correct message, as you see in Figure 4-2.

Get double.html to Work

Create double.html now, or get it from the downloadable code for this book, and get it
working. This application is our first attempt at working with multiple XMLHttpRequest
objects, so make sure you understand how it works and what it does.

Okay, using two XMLHttpRequest objects addressed the problem. But what if there are
three buttons in the application? Do you write code for three XMLHttpRequest objects? What
if there are a hundred buttons? What if the user clicked the two buttons a dozen times? Clearly,
we need a better solution.

Using an Array of XMLHtpRequest Obijects

A better solution might be to use an array of XMLHttpRequest objects. We could create a new
XMLHttpRequest for each new request, and keep them separate easily using an array.

Here’s how that works in a new example, array.html. We can start by creating for the
XMLHttpRequest objects a new array named XMLHttpRequestObjects, using the JavaScript
Array function:

<html>
<head>
<title>Using an Array of XMLHttpRequest Objects</title>

112 Ajax: A Beginner's Guide

<script language = "javascript"s>

var XMLHttpRequestObjects = new Array();

An easy way to add items to the end of an array in JavaScript is to use the push
function. We can use the push function to store new XMLHttpRequest objects in the
XMLHttpRequestObjects array, like this in getDatal, the function connected to button 1:

<html>
<head>
<title>Using an Array of XMLHttpRequest Objects</title>

<script language = "javascript"s>
var XMLHttpRequestObjects = new Array();

function getDatal (dataSource, divID)
{
if (window.XMLHttpRequest) {
XMLHttpRequestObjects.push(new XMLHttpRequest()) ;
} else if (window.ActiveXObject) {
XMLHttpRequestObjects.push(new ActiveXObject ("Microsoft.XMLHTTP")) ;

The index in the array at which the newest XMLHttpRequest object is stored is
XMLHttpRequestObjects.length —1, and we assign that value to a variable named index so that
we can keep track of the newest XMLHttpRequest object:

<html>
<head>
<title>Using an Array of XMLHttpRequest Objects</title>

<script language = "javascript"s
var index = 0;

var XMLHttpRequestObjects = new Array () ;

function getDatal (dataSource, divID)
{
if (window.XMLHttpRequest) {
XMLHttpRequestObjects.push (new XMLHttpRequest ()) ;
} else if (window.ActiveXObject) {
XMLHttpRequestObjects.push (new ActiveXObject ("Microsoft.XMLHTTP")) ;

}

Chapter 4: Full Throtfle Ajax 1 13

index = XMLHttpRequestObjects.length - 1;

Now we can refer to the most current XMLHttpRequest object as XMLHttpRequestObjects
[index] like this in the remainder of getDatal:

<html>
<head>
<title>Using an Array of XMLHttpRequest Objects</title>

<script language = "javascript"s>
var index = 0;

var XMLHttpRequestObjects = new Array() ;

function getDatal (dataSource, divID)

{

if (window.XMLHttpRequest) {
XMLHttpRequestObjects.push (new XMLHttpRequest ()) ;
} else if (window.ActiveXObject) ({
XMLHttpRequestObjects.push (new ActiveXObject ("Microsoft.XMLHTTP")) ;

}

index = XMLHttpRequestObjects.length - 1;

if (XMLHttpRequestObjects[index]) {
XMLHttpRequestObjects [index] .open ("GET", dataSource) ;
var obj = document.getElementById(divID) ;

XMLHttpRequestObjects [index] .onreadystatechange = function()

{
if (XMLHttpRequestObjects[index] .readyState == 4 &&
XMLHttpRequestObjects [index] .status == 200) {
obj.innerHTML = XMLHttpRequestObjects[index].responseText;

XMLHttpRequestObjects [index] .send (null) ;

And getData2, the function tied to button 2, works in a similar fashion:

function getData2 (dataSource, divID)

{

if (window.XMLHttpRequest) {
XMLHttpRequestObjects.push (new XMLHttpRequest ()) ;

114 Ajox: A Beginner's Guide

} else if (window.ActiveXObject) {
XMLHttpRequestObjects.push (new ActiveXObject ("Microsoft.XMLHTTP")) ;

}

index = XMLHttpRequestObjects.length - 1;

if (XMLHttpRequestObjects [index]) {
XMLHttpRequestObjects [index] .open ("GET", dataSource) ;

var obj = document.getElementById (divID) ;

XMLHttpRequestObjects [index] .onreadystatechange = function/()

{
if (XMLHttpRequestObjects[index] .readyState == 4 &&
XMLHttpRequestObjects [index] .status == 200) {
obj.innerHTML = XMLHttpRequestObjects [index] .responseText;
}
}

XMLHttpRequestObjects [index] .send (null) ;

Finally, we tie getDatal and getData2 to the two buttons:

<html>
<head>
<title>Using an Array of XMLHttpRequest Objects</title>

<script language = "javascript"s
var index = 0;

var XMLHttpRequestObjects = new Array () ;

function getDatal (dataSource, divID)

{
if (window.XMLHttpRequest) {
XMLHttpRequestObjects.push (new XMLHttpRequest ()) ;
} else if (window.ActiveXObject) {
XMLHttpRequestObjects.push (new ActiveXObject ("Microsoft.XMLHTTP")) ;

}

index = XMLHttpRequestObjects.length - 1;

if (XMLHttpRequestObjects [index]) {
XMLHttpRequestObjects [index] .open ("GET", dataSource) ;

var obj = document.getElementById (divID) ;

XMLHttpRequestObjects [index] .onreadystatechange = function/()

if (XMLHttpRequestObjects[index] .readyState == 4 &&
XMLHttpRequestObjects [index] .status == 200) {
obj.innerHTML = XMLHttpRequestObjects [index] .responseText;
}

Chapter 4: Full Throttle Ajax

XMLHttpRequestObjects [index] .send (null) ;
}
}

function getData2 (dataSource, diviID)
{
if (window.XMLHttpRequest) {
XMLHttpRequestObjects.push (new XMLHttpRequest ()) ;
} else if (window.ActiveXObject) ({
XMLHttpRequestObjects.push (new ActiveXObject ("Microsoft.XMLHTTP")) ;

}

index = XMLHttpRequestObjects.length - 1;

if (XMLHttpRequestObjects [index]) {
XMLHttpRequestObjects [index] .open ("GET", dataSource) ;

var obj = document.getElementById (divID) ;

XMLHttpRequestObjects [index] .onreadystatechange = function()

{
if (XMLHttpRequestObjects[index] .readyState == 4 &&
XMLHttpRequestObjects [index] .status == 200) {
obj.innerHTML = XMLHttpRequestObjects [index] .responseText;
}
}
XMLHttpRequestObjects [index] .send (null) ;
}
}
</script>
</heads>
<body>

<hl>Using an Array of XMLHttpRequest Objects</hl>

<form>
<input type = "button" value = "Fetch message 1"
onclick = "getDatal ('dataresponder.php?data=1', 'targetDiv')">
<input type = "button" value = "Fetch message 2"
onclick = "getData2 ('dataresponder.php?data=2"', 'targetDiv')">
</form>

<div id="targetDiv">
<p>The fetched message will appear here.</p>
</div>

</body>
</html>

You can see this new application, array.html, at work in Figure 4-3. Cool.
Clicking either button will download the correct message, as you see in Figure 4-3.

115

116 Ajax: A Beginner's Guide

A Using an Array of XMLHttpRequest Objects - Microsoft Internet Explorer |:||§|g|

ar

File Edit View Favorites Tools Help
Qback ~ & - ¥ A 0| Poearch rFavartes 8 | D- & W - @ @ 3
Address @ http: fflocalhostfchapterdfarray, html V| Go Links **

Using an Array of XMLHttpRequest Objects

[Fetch message 1 %J[Fetch message 2]

The server got a value of 1

Figure 4-3 array.html

Get array.html to Work

Create array.html now, or get it from the downloadable code for this book, and get it working.
This application is a better option for working with multiple XMLHttpRequest requests, so
make sure you understand how it works.

So array.html works by creating a new XMLHttpRequest object for each Ajax request. But
isn’t it a little wasteful? After all, all those old XMLHttpRequest objects keep hanging around
in the array, even after their request is completed. And that clutters up memory. Worse, it could
halt your application if the user clicks the buttons several hundred or thousand times, as in an
Ajax-enabled game.

Isn’t there some way to easily get rid of XMLHttpRequest objects that you don’t need any
more?

Using Inner Functions

It turns out that the way you usually handle multiple XMLHttpRequest requests in Ajax is with
inner functions, not with arrays of XMLHttpRequest objects.
‘What are inner functions? Those are functions contained inside another function, like this:

function outer (value)

{

var iteml = value;

function inner (item2)

{

return (iteml + item2)

}
}

Chapter 4: Full Throttle Ajax

As you can see, the inner function is contained inside the outer function. What’s so special
about that? If you call the outer function with a value that is used to set the variable item1,
item1 preserves its value when you call the inner function. So, for example, if you call outer
and pass it a value of 1, and then call inner, passing it a value of 2, inner will return 1 + 2. If
you then call inner with a value of 4, it will return 1 + 4.

Suppose you then call outer with a new value, 2, and then call inner with a value of 3. In
this case, item1 is 2 and item?2 is 3, so inner returns 3 + 2 = 5.

What does this buy you? Here’s the key: every time you call outer, a new copy of the
outer function is created, which includes a new copy of the inner function inside it. Make the
transition from thinking in terms of item1 to thinking in terms of an XMLHttpRequest object,
and you can see the point: you can work this so that every time the getData function is called,
a new XMLHttpRequest object is created, and the anonymous function that uses it—the inner
function—will always have a fresh XMLHttpRequest object to work with.

Here’s what our code looks like in general now—note that the XMLHttpRequest object
creation is outside the getData function:

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;
}

function getData (dataSource, diviID)

{
if (XMLHttpRequestObject) {
var obj = document.getElementById(divID) ;
XMLHttpRequestObject.open ("GET", dataSource) ;

XMLHttpRequestObject.onreadystatechange = function()

{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200)
obj.innerHTML = XMLHttpRequestObject.responseText;

}
}

XMLHttpRequestObject.send (null) ;

}
}

To make sure there’s a new XMLHttpRequest object for each Ajax request, you just move
the XMLHttpRequest object creation code inside the getData function. That makes getData

117

118 Ajax: A Beginner's Guide

into the outer function that encloses the inner, anonymous function that actually works with
the XMLHttpRequest object. Each time you call getData, a new copy of that function will be
created, which in turn will create a new XMLHttpRequest object that will be used by the inner
function when the Ajax request returns from the server.

Here’s what it looks like in code:

function getData (dataSource, diviID)
{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest() ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft.XMLHTTP") ;

}

if (XMLHttpRequestObject) {
var obj = document.getElementById(divID) ;
XMLHttpRequestObject.open ("GET", dataSource) ;

XMLHttpRequestObject.onreadystatechange = function()
{

if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200)

obj.innerHTML = XMLHttpRequestObject.responseText;

}
}

XMLHttpRequestObject.send (null) ;

}
}

So instead of creating multiple XMLHttpRequest objects and two functions, getDatal and
getData2, like this,

var XMLHttpRequestObjectl = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObjectl = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObjectl = new
ActiveXObject ("Microsoft .XMLHTTP") ;
}

var XMLHttpRequestObject2 = false;

Chapter 4: Full Throttle Ajax

if (window.XMLHttpRequest) {
XMLHttpRequestObject2 = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject2 = new
ActiveXObject ("Microsoft .XMLHTTP") ;
}

function getDatal (dataSource, divID)
{
if (XMLHttpRequestObjectl) {
var obj = document.getElementById(divID) ;
XMLHttpRequestObjectl.open ("GET", dataSource) ;

XMLHttpRequestObjectl.onreadystatechange = function/()
{
if (XMLHttpRequestObjectl.readyState == 4 &&
XMLHttpRequestObjectl.status == 200)
obj.innerHTML = XMLHttpRequestObjectl.responseText;

}
}

XMLHttpRequestObjectl.send (null) ;
}
}

function getData2 (dataSource, divID)
{
if (XMLHttpRequestObject2) {
var obj = document.getElementById(divID) ;
XMLHttpRequestObject2.open ("GET", dataSource) ;

XMLHttpRequestObject2.onreadystatechange = function/()
{
if (XMLHttpRequestObject2.readyState == 4 &&
XMLHttpRequestObject2.status == 200)
obj.innerHTML = XMLHttpRequestObject2.responseText;

}
}

XMLHttpRequestObject2.send (null) ;

119

120 Ajox: A Beginner's Guide

you need only one getData function, and can simply move the XMLHttpRequest object
creation code into that function, like this in inner.html:

<html>
<head>

<title>Using Inner Functions and Multiple XMLHttpRequest Objects</titles

<script language = "javascript"s>
function getData(dataSource, divID)
{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft.XMLHTTP") ;
}

if (XMLHttpRequestObject) {
var obj = document.getElementById(divID) ;
XMLHttpRequestObject.open ("GET", dataSource);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
obj.innerHTML = XMLHttpRequestObject.responseText;

XMLHttpRequestObject.send(null) ;

}
}

</script>
</head>

<body>

<hl>Using Inner Functions and Multiple XMLHttpRequest Objects</hl>

<form>
<input type = "button" value = "Fetch message 1"
onclick = "getData('dataresponder.php?data=1', 'targetDiv')'"s>
<input type = "button" value = "Fetch message 2"
onclick = "getData ('dataresponder.php?data=2', 'targetDiv')">
</form>

<div id="targetDiv">

<p>The fetched message will appear here.</p>
</div>

</body>
</html>

Chapter 4: Full Throttle Ajax 121

‘A Using Inner, Functions and Multiple XMLHttpRequest Objects - Microsoft Internet Explorer, |;||§|r>__<|
File Edit View Favorites Tools Help i.'
Qback ~ O - ¥ A | Poearch rFavortes 8 | R- & W - L @& @ 3
Address @ http: fflocalhostfchapterdfinner, html V| Go Links **

Using Inner Functions and Multiple
XMLHttpRequest Objects

[Fetch message 1] [Fetch message 2 Q

The server got a value of 2

Figure 4-4 inner.html

You can see inner.html at work in Figure 4-4. Go ahead, click the buttons as often as you
like; there won’t be any conflict between Ajax requests.

The inner.html example shows how to avoid potential conflicts between Ajax requests—
just place the XMLHttpRequest creation code inside the getData function (or whatever you

call that function in your own code).
That’s it. Now you can handle multiple XMLHttpRequest requests with ease.

Get Inner Functions to Work

Confirm that inner functions work as advertised by checking out this chunk of code:

function outer (value)

{

var iteml = value;

function inner (item2)

{

}
}

return (iteml + item2)

Put it into a page and call outer(1), then inner(2). Do you get a result of 3? Then try calling
outer(2) and inner(2) again. Did you get 4?

122

Ajax: A Beginner's Guide

Downloading JavaScript

Sometimes, Ajax is used to download not just plain text, not just XML, but other character-
based data. One popular choice is, believe it or not, JavaScript. That choice makes sense, for
example, if your web site has a dozen JavaScript functions and code that determines which
function is appropriate to call now; for example, a restaurant web site might display different
menus depending on the time of day. Or you could read the JavaScript that calls a function
with particular data.

In fact, that’s how we’ll be able to connect to Google Suggest later in this chapter to
download the matches it found to the search term the user typed. What you actually download
from Google is text that is JavaScript, and that JavaScript is a function call. For example, if
you type the letter “a,” you’d be able to download this JavaScript from Google Suggest:

window.google.ac.Suggest apply(frameElement, "a", new Array (2,
"amazon", "855,000,000 results", "argos", "12,500,000 results",
"aol", "278,000,000 results", "autotrader", "5,820,000 results",
"apple", "436,000,000 results", "amazon.com", "461,000,000 results",
"aol.com", "87,200,000 results", "american airlines",

"14,600,000 results", "australian open", "12,300,000 results",
"ask.com", "39,600,000 results"), new Array(""));

This is JavaScript that’s a call to a function with the odd name window.google.ac.Suggest_
apply (it’s odd because that’s a completely illegal JavaScript function name—the browser
window object does not have a built-in method named google.ac.Suggest_apply), and you can
see the matches Google Suggest found for the character “a” in the function call, which we’1l
decode later in this chapter.

We’ll start by taking a look at an example that downloads JavaScript, javascript.html. This
Ajax application will read text from a PHP script, javascript.php, and that text is just a call to a
function named show (bear in mind that you’re going to read all about PHP in Chapter 9):

<?php
echo 'show()';
?>

When we download the text from javascript.php, we can execute that text as JavaScript,
which will cause the browser to look for a JavaScript function we’ve written named show and
call that function.

Here’s how we start javascript.html—note that we create a button in HTML and connect it
to a JavaScript function named getData:

<html>
<head>
<title>Downloading JavaScript with Ajax</title>

<script language = "javascript"s>
var XMLHttpRequestObject = false;

Chapter 4: Full Throttle Ajax

if (window.XMLHttpRequest) {

XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {

XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP") ;

}

function getData (dataSource)
{
if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", dataSource) ;

XMLHttpRequestObject.onreadystatechange = function()

{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
}
}
XMLHttpRequestObject.send (null) ;
}
}
</scripts>
</heads>

<body>

<Hl>Downloading JavaScript with Ajax</H1>

<form>
<input type = "button" value = "Get the JavaScript"
onclick = "getData('javascript.php')">
</form>

<div id="targetDiv">
<p>The data will go here.</p>
</divs>

</body>
</html>

When you download the text (which reads, “show()”’) from javascript.php, you can
execute that text with the JavaScript eval function. That’s what the eval function does—you
pass it text and it executes that text as JavaScript.

123

124 Ajox: A Beginner's Guide

The downloaded text will be in XMLHttpRequestObject.responseText, and you can
execute that text as JavaScript in this way in getData:

function getData (dataSource)

{

if (XMLHttpRequestObject)
XMLHttpRequestObject.open ("GET", dataSource) ;

XMLHttpRequestObject.onreadystatechange = function()
{

if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200)

eval (XMLHttpRequestObject.responseText) ;

}
}

XMLHttpRequestObject.send (null) ;
}
}

Of course, this means that we’ll need a JavaScript function named show. In that function,

we might just display the text “Yep, it worked!” in the web page. Here’s what that looks like in
the final form of javascript.html:

<html>
<head>

<titles>Downloading JavaScript with Ajax</title>

<script language = "javascript"s>
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP") ;

}

function getData (dataSource)
if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", dataSource) ;

XMLHttpRequestObject.onreadystatechange = function()

Chapter 4: Full Throttle Ajax

{

if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200)

eval (XMLHttpRequestObject .responseText) ;

}
}

XMLHttpRequestObject.send (null) ;

}
}

function show()

{

var targetDiv = document.getElementById("targetDiv") ;

targetDiv.innerHTML = "Yep, it worked!";

}
</script>
</head>
<body>

<Hl>Downloading JavaScript with Ajax</H1l>

<form>
<input type = "button" value = "Get the JavaScript"
onclick = "getData('javascript.php')">
</form>

<div id="targetDiv">
<p>The data will go here.</p>
</div>

</body>
</html>

So when the user clicks the button, the application reads the text returned by javascript.php
and executes that text as JavaScript, calling the show function, which displays the message you

see in Figure 4-5.

This example demonstrates that you can download and execute JavaScript almost as easily
as you can download text. And that prepares you for working with Google Suggest, coming

up next.

125

126

Ajax: A Beginner's Guide

A Downloading JavaScript with Ajax - Microsoft Internet Explorer

File Edit View Favorites Tools Help l?
Qback ~ O - ¥ A (| Poearch rFavartes 8 | D- &] - L @& @ 3
Address @ http: fflocalhost fchapterd/fjavascript. html V| Go Links **

Downloading JavaScript with Ajax

Getthe JawaScript

Tep, it worked!

Figure 4-5 javascript.html

Download JavaScript

Try creating a new Ajax-enabled web page that includes a JavaScript function named adder,
which adds two values and returns the sum:

function adder (valuel, value2)

{

return (iteml + item2)

}

Then download the text adder(2, 3) from the server, execute it, and confirm that you get an

answer of 5.

Now that we’ve seen how to download and execute JavaScript using Ajax, we’re ready for

the major example of this chapter—connecting to Google Suggest.

Connecting fo Google Suggest

Behold Google Suggest in Figure 4-6. When you start typing a search term, Google Suggest
suggests, in a drop-down list, matches to what you’ve typed. You then can select a term from
that list, which saves you from having to type the whole search term.

You can connect to Google Suggest yourself by using Ajax, and we’ll take a look at how to
do that now. Among other things, this example will let you learn how to use Ajax to respond to

single keystrokes typed by the user.
Let’s get our version of the Google Suggest page going now.

Chapter 4: Full Throttle Ajax

‘A Google - Microsoft Internet Explorer

File Edit View Favorites Tools Help = -'
Qiack ~ O - ¥ A (0| Poearch rFavartes 8 | D- & W - L @& @ 3

Address @ http: S, google, comfwebhp?complete=1&hl=en V| Go Links **
Web Images Maps MNews Shopping Mail more « steve@lightlink.com | iGoogle | My Account | Sign out @

4 M
amazaon 55,000,000 results| Language Toals =
argos 12,500,000 results
aol 278,000,000 results
As you type, God autotrader 5,520,000 rasults I e
apple 436,000,000 results —
arnaTan raem AR 0NN AN resnlts o8|
@ B Internet

Figure 4-6 Google Suggest

Creating the Search Term Field

We’re going to connect to Google Suggest ourselves using Ajax. First, we’ll need a text field
that lets the user enter their search term, and that might look like this in the body of the page:

<body>
<H1>Handling Google Suggest</H1l>

Search for <input id = "textField" type = "text">

</body>

You can see what this web page looks like so far in Figure 4-7.

We’re going to need to check what the user has entered each time they press a key, and
display the matches found to what they’ve typed. We can respond to keystrokes by using the
text field’s onkeyup event, which occurs when the user releases a key. We can handle that
event by calling a function named, say, askGoogleSuggest:

<body>

<Hl>Handling Google Suggest</H1l>

127

128 Ajax: A Beginner's Guide

& | Handling Google Suggest - Microsoft Internet Explorer

File Edit View Favorites Tools Help
Qiack ~ O - ¥ A (| Poearch TrFavartes 8 | D- & W - @& @ 3

Address @ http: fflacalhostfchapterd/google. html V| Go Links **

Handling Google Suggest
Search forl:l

Figure 4-7 Our version of Google Suggest

Search for <input id = "textField" type = "text"
name = "textField" onkeyup = "askGoogleSuggest() ">
</body>

So far so good. Now we’ll need an element to display our drop-down menu (of the kind
you see in Figure 4-6) that shows the user the matches to their partial search term. We’ll
display that drop-down list—which will actually be an HTML table—using a <div> element
with the ID targetDiv like this:

<body>

<Hl1>Handling Google Suggest</H1l>

Search for <input id = "textField" type = "text"
name = "textField" onkeyup = "askGoogleSuggest ()">
<div id = "targetDiv"><div></div></div>

</body>

That completes the body of the web page. Let’s turn to the JavaScript next, which is where
the real action is.

Writing the JavaScript
Let’s create the askGoogleSuggest function now:

<script language = "javascript"s
function askGoogleSuggest ()

Chapter 4: Full Throttle Ajax 129

}

</script>

This function is called when the user presses a key, and we can read that key using the
value property of the text field. First, we get an object corresponding to the text field (the text

field has the ID textField):

<script language = "javascript'"s
function askGoogleSuggest ()
{

var input = document.getElementById("textField") ;

}

</scripts>

If there is a partial search term in the text field, we can send it to Google Suggest to get its
suggestions; here’s how you check if there is a partial search term already entered:

<script language = "javascript'"s
function askGoogleSuggest ()
{

var input = document.getElementById("textField") ;

if (input.value) {

}
}
</scripts>
If there is a search term waiting, we can send it to Google Suggest. We’ll do that via a PHP
script, google.php, using the GET method, which means we have to URL-encode our data.
We’ll send the partial search term to google.php (which will forward that term on to Google
Suggest) using the argument name qu (short for query). Here’s how we send the partial search
term to google.php, by calling a function we’ve named getData:

<script language = "javascript'"s
function askGoogleSuggest ()
{

var input = document.getElementById("textField") ;

if (input.value) {
getData ("google.php?qu=" + input.value);
}
1

</scripts>

130

Ajax: A Beginner's Guide

Why do we communicate with Google Suggest via a PHP script? Why can’t we just
contact Google Suggest directly, from this web page? These are important questions. The
answer is that this is an issue of security. If a web browser sees that your Ajax script is trying
to contact a server that’s not the same server on which your web page resides, it will get
suspicious. That’s the case here—the server on which Google Suggest resides is not the same
as our server.

In cases like this, the browser puts up an (annoying) dialog box, asking the user if
it should proceed. That kind of thing destroys the utility of Ajax, which is supposed to
operate seamlessly, behind the scenes. To get around this problem, you can use server-side
programming, on your own server, to connect to the foreign server. That’s what we’re doing
here—we’re connecting to Google Suggest via google.php to avoid security issues (and we’ll
write google.php a bit later).

Okay, we’re nearly done with the askGoogleSuggest function. The last step is to clear the
drop-down list box if the user has erased the text in the search text field, which we do like this:

<script language = "javascript"s>
function askGoogleSuggest ()

{

var input = document.getElementById("textField") ;

if (input.value) {
getData ("google.php?qu=" + input.value) ;

}
else {
var targetDiv = document.getElementById("targetDiv") ;

targetDiv.innerHTML = "<div></div>";

}
}

</script>
The getData function in this example just takes a URL argument, named dataSource:

<script language = "javascript"s>
function getData (dataSource)

{

}

</script>

The dataSource argument will hold the URL of google.php, along with the URL-encoded
search term the user has typed. We’re going to connect to google.php using Ajax in the getData
function, and we’ll start by creating an XMLHttpRequest object:

Chapter 4: Full Throttle Ajax 131

<script language = "javascript'"s>
function getData (dataSource)

var XMLHttpRequestObject = false;
if (window.XMLHttpRequest) {

XMLHttpRequestObject = new XMLHttpRequest();
} else if (window.ActiveXObject) {

XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP") ;
}

}

</scripts>

Now we can connect to google.php in the usual way—using an anonymous function:

<script language = "javascript'"s
function getData (dataSource)
{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;

} else if (window.ActiveXObject) {

XMLHttpRequestObject = new ActiveXObject ("Microsoft .XMLHTTP") ;

if (XMLHttpRequestObject) {

XMLHttpRequestObject.open ("GET", dataSource);

XMLHttpRequestObject.onreadystatechange

= function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
}
}
}
}
</scripts>

What kind of return text will we get from Google Suggest? If your search term is “a,” for
example, this is the text you’ll get back from Google Suggest using Ajax:

window.google.ac.Suggest apply (frameElement,
"amazon", "855,000,000 results",

"aol", "278,000,000 results",

"a", new Array (2,
"argos", "12,500,000 results",
"autotrader", "5,820,000 results",

132

Ajax: A Beginner's Guide

"apple", "436,000,000 results", "amazon.com", "461,000,000 results",
"aol.com", "87,200,000 results", "american airlines",

"14,600,000 results", "australian open", "12,300,000 results",
"ask.com", "39,600,000 results"), new Array(""));

This is JavaScript; Google Suggest returns a JavaScript function call (in text form, of
course) that is built so that you can call a function of the same name in your Ajax application.
But that introduces a problem: if you try to create a function of this name, window.google
.ac.Suggest_apply, Firefox and Internet Explorer will both have errors and tell you that their
built-in window object does not contain a “google” property or method. How can you fix that?
You can rename the function in the JavaScript returned from Google Suggest into something
legal, such as “callback™:

callback (frameElement, "a", new Array (2, "amazon",

"855,000,000 results", "argos", "12,500,000 results",

"aol", "278,000,000 results", "autotrader", "5,820,000 results",
"apple", "436,000,000 results", "amazon.com",

"461,000,000 results", "aol.com", "87,200,000 results",
"american airlines", "14,600,000 results", "australian open",
"12,300,000 results", "ask.com", "39,600,000 results"),

new Array(""));

How do you rename "window.google.ac.Suggest_apply" as "callback" in the text you get
back from Google Suggest? You can use the handy JavaScript replace function, which is built
to do just this—replace text inside strings. The text we get from Google Suggest (via google
.php) will be accessible in the responseText property of the XMLHttpRequest object, and we
can use the replace method as follows to convert the call "window.google.ac.Suggest_apply"
to "callback" and store the resulting, edited text in a variable named text:

<script language = "javascript'"s
function getData (dataSource)
{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new ActiveXObject ("Microsoft .XMLHTTP") ;

}

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", dataSource) ;

XMLHttpRequestObject.onreadystatechange = function()
if (XMLHttpRequestObject.readyState == 4 &&

XMLHttpRequestObject.status == 200) {
var text =

Chapter 4: Full Throttle Ajax

XMLHttpRequestObject.responseText.replace (
"window.google.ac.Suggest apply", "callback"):;

}
}

1
}
</scripts>
Excellent; now the JavaScript stored in the text variable can be treated as workable

JavaScript (as soon as we create the function named callback). Here’s how to execute

that JavaScript with the eval function—note that we also connect to the server with the
XMLHttpRequest object’s send method:

<script language = "javascript"s>
function getData (dataSource)
{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {

XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {

XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP") ;

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", dataSource) ;

XMLHttpRequestObject.onreadystatechange = function()

{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200)
var text =
XMLHttpRequestObject .responseText .replace (
"window.google.ac.Suggest_apply", "callback");
eval (text) ;
1
}
XMLHttpRequestObject.send (null) ;
}
}
</script>

That completes the getData function, which calls the JavaScript downloaded from Google

Suggest. We’ve edited that JavaScript so that it calls a function named callback, and now we
have to write the callback function.

133

134 Ajax: A Beginner's Guide

Displaying the Matches

Here’s the JavaScript downloaded, edited, and executed by the getData function:

callback (frameElement, "a", new Array (2, "amazon", "855,000,000 results",
"argos", "12,500,000 results", "aol", "278,000,000 results", "autotrader",
"5,820,000 results", "apple", "436,000,000 results", "amazon.com",
"461,000,000 results", "aol.com", "87,200,000 results",

"american airlines", "14,600,000 results", "australian open",

"12,300,000 results", "ask.com", "39,600,000 results"), new Array(""));

Our callback function should accept these arguments, so here’s how to create that function:

<script language = "javascript"s>
function callback (unusedVariable, searchTerm, arrayTerm,
unusedArray)
{
}
</scripts>

We’re going to display the drop-down list of suggestions as an HTML table, and we’re
going to store that HTML in a variable named data. Here’s how we create the data variable and
set up a loop to add all the suggestions we get from Google Suggest:

<script language = "javascript"s>
function callback (unusedvVariable, searchTerm, arrayTerm,
unusedArray)

var data = "<table>";
var loopIndex;

for (loopIndex = 1; loopIndex < arrayTerm.length;
loopIndex++) {

}

data += "</table>";

}

</script>

And here’s the actual loop that loops over the suggestions from Google Suggest—note
that we make the search terms into hyperlinks (pointing the user to Google), just as in the real
Google Suggest page:

<script language = "javascript"s>
function callback (unusedVariable, searchTerm, arrayTerm,

Chapter 4: Full Throttle Ajax 135

unusedArray)

var data = "<table>";
var loopIndex;

for (loopIndex = 1; loopIndex < arrayTerm.length;
loopIndex++) {

data += "<tr><td>" +
"<a href='http://www.google.com/search?q=" +
arrayTerm[loopIndex] + "'>" + arrayTerm[loopIndex] +

'</td><td>' + arrayTerm[++loopIndex] + "</td></tr>";

}

data += "</table>";

}

</script>

Ask the Expert

Q: What does the term ++loopIndex do in the above code? Is it different from loopIndex++?

A: Putting the JavaScript increment operator (introduced in Chapter 2) in front of a variable
name (++loopIndex) adds 1 to the value of the variable before the rest of the JavaScript
statement is executed, whereas putting the increment operator at the end of a variable
name (loopIndex++) means that 1 will be added to the value in the variable after the rest
of the statement has been executed. It doesn’t usually matter which one you choose, but
here it does, because we needed to increment loopIndex before using it to reach the next
suggestion in the array of suggestions.

At the end of the code in the callback function, the data variable holds the HTML table
we’re going to use to display the suggestions we got from Google Suggest, and we display that
table by assigning data to the innerHTML property of the <div> element that will show the
drop-down list:

<script language = "javascript"s>
function callback (unusedvVariable, searchTerm, arrayTerm,
unusedArray)
var data = "<table>";
var loopIndex;

for (loopIndex = 1; loopIndex < arrayTerm.length;
loopIndex++) {

136

Ajax: A Beginner's Guide

data += "<tr><td>" +
"<a href='http://www.google.com/search?g=" +
arrayTerm[loopIndex] + "'>" + arrayTerm[loopIndex] +

'</td><td>' + arrayTerm[++loopIndex] + "</td></tr>";

}

data += "</table>";
var targetDiv = document.getElementById("targetDiv") ;

targetDiv.innerHTML = data;

}

</script>

There’s one last step here. We can style the <div> element that displays the Google
Suggest suggestions, giving it the appearance of a drop-down list. Here’s how we give HTML
that appears in the <div> element a light-pink background, using a <style> element in the
google.html application:

<html>
<head>

<titles>Handling Google Suggest</titles>

<style>

#targetDiv {
background-color: #FFAAAA;
width: 40%;

}

</style>

<script language = "javascript"s
function getData (dataSource)

And that finishes google.html—here it is in all its glory:

<html>
<head>

<title>Handling Google Suggest</title>

<style>

#targetDiv {
background-color: #FFAAAA;
width: 40%;

}

Chapter 4: Full Throttle Ajax

</style>

<script language = "javascript'"s>
function getData (dataSource)
{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) ({

XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP") ;
}

if (XMLHttpRequestObject) {

XMLHttpRequestObject.open ("GET", dataSource) ;

XMLHttpRequestObject .onreadystatechange

= function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
var text = XMLHttpRequestObject.responseText.replace (
"window.google.ac.Suggest apply", "callback");
eval (text) ;
}
1

XMLHttpRequestObject.send (null) ;

}
}

function askGoogleSuggest ()
{

var input = document.getElementById("textField") ;
if (input.value) {

getData ("google.php?qu=" + input.value) ;
}

else {
var targetDiv = document.getElementById ("targetDiv") ;

targetDiv.innerHTML = "<divs></div>";

}
}

function callback (unusedvVariable,
unusedArray)

{
var data = "<table>";
var loopIndex;

searchTerm, arrayTerm,

137

138

Ajax: A Beginner's Guide

for (loopIndex = 1; loopIndex < arrayTerm.length;
loopIndex++) {
data += "<tr><td>" +
"<a href='http://www.google.com/search?g=" +
arrayTerm[loopIndex] + "'>" + arrayTerm[loopIndex] +
'</td><td>' + arrayTerm[++loopIndex] + "</td></tr>";

}
data += "</table>";
var targetDiv = document.getElementById("targetDiv") ;
targetDiv.innerHTML = data;
}
</scripts>
</head>

<body>

<Hl>Handling Google Suggest</H1l>

Search for <input id = "textField" type = "text"
name = "textField" onkeyup = "askGoogleSuggest ()">
<div id = "targetDiv'"s><divs></divs></divs>

</body>
</html>

Great, that takes care of google.html. The last step is to create the PHP script that it
communicates with, google.php.

Creating google.php

As you know, google.html relies on a PHP script, google.php, to connect to Google Suggest.
The google.html application connects to Google Suggest in this way to avoid the security
issues that are raised when you use Ajax to connect to a server other than the one your page is
hosted on.

So we’re going to use google.php to connect to Google Suggest. The URL of Google
Suggest is “http://www.google.com/complete/search?hl=en&js=true&qu=", where you add the
partial search term that the user has typed to the end of this URL—for example, if the search
term is “ajax,” the URL you access is “http://www.google.com/complete/search?hl=en&js=tru
e&qu=ajax”.

How do you use a PHP script to access a URL like that? You’ll see more about PHP
later in the book, but it turns out that you can treat URLs much as you would treat filenames
in PHP, and you can “open” a URL with the fopen (file open) function, which returns a file

http://www.google.com/complete/search?hl=en&js=true&qu=
http://www.google.com/complete/search?hl=en&js=true&qu=ajax
http://www.google.com/complete/search?hl=en&js=true&qu=ajax

Chapter 4: Full Throttle Ajax 139

handle, which you store in a variable (we’re not going to make much use of file handles or file
handling in PHP in this book, but it’s useful for this example). You can then use the file handle
to refer to the URL, including reading data from that URL. Here’s how to “open” Google
Suggest with the partial search string passed to google.php (you recover the partial search term
from the $_GET array and then add that term to the URL with the PHP string concatenation
operator, which is a dot, .):

<?php
sfilehandle =
fopen ("http://www.google.com/complete/search?hl=en&js=true&qu="
$_GET["qu"], "xr");

The "r" here indicates that we want to open the Google Suggest URL for reading (as
opposed to trying to write to it).

Now you’re ready to read the suggestions that Google Suggest will pass back to you.
You can do that in a while loop in PHP, which works just like a while loop in JavaScript. In
this while loop, we’ll be reading from the file handle, and can use the feof (File End of File)
PHP function to determine when we’re at the end of the “file”” (and the while loop should
terminate):

<?php
$filehandle =
fopen ("http://www.google.com/complete/search?hl=en&js=true&qu="
$_GET["qu"] , "rn);
while (!feof($filehandle)){

Note the while loop’s condition here—!feof($filehandle). What’s the ! for? It’s an operator
(in both PHP and JavaScript; see Table 2-1) that reverses the logical sense of an expression. So
while feof($filehandle) is true when we’re at the end of a file, !feof($filehandle) is true while
we’re not at the end of the file—just what we want, to make sure the while loop keeps looping
until we reach the end of the file.

Now google.php reads individual lines of text from Google Suggest and echoes them back
to google.html using the PHP fgets (File Get String) and echo functions:

<?php
sfilehandle =
fopen ("http://www.google.com/complete/search?hl=en&js=true&qu="
$_GET["qu"], "xr");
while (!feof ($filehandle)) {

140 Ajox: A Beginner's Guide

$download = fgets($filehandle);
echo $download;

}

?>

And we’re almost done. All that’s left at the end of google.php is to close the URL that we’ve
been reading from, and we can use the PHP fclose (File Close) function to do that in this way:

<?php
sfilehandle =
fopen ("http://www.google.com/complete/search?hl=en&js=true&qu="
S_GET["qu"]l, "r");
while (!feof ($filehandle))
Sdownload = fgets($filehandle) ;
echo $download;

1
fclose($filehandle) ;
?>

Whew. All done. This example—google.html and google.php—is ready to roll. This
example reads what the user types as they type it, relays what they’ve typed to Google Suggest
through google.php, downloads the Google Suggest suggestions, and displays them.

You can see this example at work in Figure 4-8, where the user has typed “a,” and the

application has downloaded the suggestions Google Suggest made and is displaying them.
Very cool.

And that completes google.html.

& | Handling Google Suggest - Microsoft Internet Explorer

File Edit View Favorites Tools Help
Qiack ~ & - ¥ A | Poearch TrFavartes 8 | R- & W - L @B @ 3

Address @ http: fflacalhostfchapterd/google. html V| Go Links **

-

Handling Google Suggest

Searchforld |

AMazon 855,000,000 results

argos 12,500,000 results =
aol 278,000,000 results

autotrader 5,820,000 results

apple 436,000,000 results

AMALOL. COm 461,000,000 results

aol.com 87,200,000 results

american atlines 14,600,000 results
australian open 12,300,000 results

@ Daone ‘ﬂ Local intranet:

I<

Figure 4-8 google html at work

Chapter 4: Full Throttle Ajax 141

Downloading from Other Domains with Ajax

As you saw when you built google.html, accessing a web server other than the one your web
page is hosted on is a little tricky with Ajax. Say your Ajax page is at www.myserver.com/
hamster_fan.html, but you want to download the page at www.theirserver.com/hamster_data
.html—that is, on a different server. You can access that page directly in Ajax from your
current page, but the browser is going to display a warning dialog box to the user, asking their
permission to proceed.

Not the most ultra-cool thing that can happen.

The common solution is to communicate with the other server (www.theirserver.com) via
server-side code, and you saw an example of that in google.php. With google.php, we were
able to relay our request to Google Suggest, and then download Google Suggest’s response.

Here’s a general PHP script that lets you redirect Ajax requests in this way—replace URL
with the URL of the web resource you want to reach:

<?php
Sfilehandle =
fopen (URL, "r");
while (!feof ($filehandle)) {
Sdownload = fgets($filehandle) ;
echo $download;

1
fclose ($filehandle) ;

?>

Contact Another Server Using Ajax

After you get google.html and google.php to work, try the same technique with another
server. For example, you might download and display the HTML of the USA Today site, www
.usatoday.com. Here’s how that would work in a PHP script:

<?php
sfilehandle =
fopen ("www.usatoday.com", "r");

while (!feof ($filehandle)) {
Sdownload = fgets($Sfilehandle) ;
echo sSdownload;

}
fclose ($filehandle) ;
?>

If you like, you can even change google.php to download from www.usatoday.com and use
google.html as it stands to connect and display the HTML of USA Today’s site.

Now it’s time to turn to another topic—requesting HTML header info with Ajax.

www.usatoday.com
www.usatoday.com
www.usatoday.com

142 Ajox: A Beginner's Guide

Getting More Info: HTML Header Requests and Ajax

You not only can download the contents of files with Ajax, you can get information about
those files. To do that, you can use the XMLHttpRequest object’s getAllResponseHeaders
method, which gives you the text corresponding to all the HTML headers received about the
file from the server.

HTTP headers are given names like Server, Date, and so on, and are assigned text about
the resource you’re accessing. You can use this kind of information before you even try to
download a web resource, to find out about that resource’s size, type, last-modified date,
and so on, which allows you to better prepare for the download. And if the user asks you to
download a resource that doesn’t exist, you can let them know without having your application
suffer some kind of error when needed data doesn’t show up.

Let’s give this a try and see what kind of HTTP headers we can download for the
google.html file. Here’s head.html, which just uses the XMLHttpRequest object’s
getAllResponseHeaders method to get all the HTTP headers available from the server about
google.html. We start by using the “HEAD” method in the call to the open function, as
opposed to “GET” or “POST”:

<html>
<head>
<title>Getting head data</title>

<script language = "javascript'"s>
function getData (dataSource, divID)

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {

XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) ({

XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP") ;
}

if (XMLHttpRequestObject) {
var obj = document.getElementById(divID) ;
XMLHttpRequestObject.open ("HEAD", dataSource);

Then we use getAllResponseHeaders to read all the HTTP headers:

<html>
<head>
<title>Getting head data</title>

<script language = "javascript'"s>
function getData (dataSource, divID)

Chapter 4: Full Throttle Ajax

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) ({

}

if (XMLHttpRequestObject) {
var obj = document.getElementById(divID) ;
XMLHttpRequestObject.open ("HEAD", dataSource) ;

XMLHttpRequestObject = new ActiveXObject ("Microsoft .XMLHTTP") ;

XMLHttpRequestObject.onreadystatechange = function/()

{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
obj.innerHTML =
XMLHttpRequestObject.getAllResponseHeaders () ;
}
}

XMLHttpRequestObject.send (null) ;
}
1

</scripts>
</head>
<body>

<H1>Getting header data</H1l>

<form>
<input type = "button" value = "Get info on google.html"
onclick = "getData('google.html', 'targetDiv')">
</form>

<div id="targetDiv">
<p>The fetched data will go here.</p>
</div>

</body>
</html>

You can see head.html at work in Figure 4-9, where the user has clicked the button and the

application fetched information about google.html.
Here’s the data the application got:

Server: Microsoft-IIS/5.1 Date: Fri, 22 Feb 2008 17:15:09 GMT
Content-Type: text/html Accept-Ranges: bytes Last-Modified:
Thu, 21 Feb 2008 18:26:23 GMT ETag: "82283a43b774c8l:a57"
Content-Length: 2304

143

144 Ajox: A Beginner's Guide

2 Gatting headar data - Microsoft Intarnet Explorer J:"@g]
Fle Edt View Favortes Tools Help ar

Qi - & -H A w |) search <7 Favorites 42 15 N H 93
@ http: fflocathostfchapterd fhead.hitml evs | Go

Addrece Links:

Getting header data

I_ Getinfo on google html L\@-J

Server: Microzoft-II5f5. 1 Date: Fr, 22 Feb 2008 17:15:09 GMT Content-Type: texthtml Accept-Fanges: bytes
Tast-Modified Thu, 21 Feh 2008 182623 GMT ETag "R22R3243h7T74rR1-257" Content-T.ength- 2304

Figure 4-9 Getting header information about google.html

You can see the individual HTTP headers here: Server: Microsoft-11S/5.1, for example,
tells you what software the server is running. Content-Length: 2304 tells you the length of
google.html. Content-Type: text/html tells you that it’s an HTML file, and so on.

Get a Specific HTML Header

You can also request just one specific HTTP header at a time if you use getResponseHeader.
Try this technique of getting the "Last-Modified" header of google.html:

function getData (dataSource, divID)
{
if (XMLHttpRequestObject) {
var obj = document.getElementById (divID) ;
XMLHttpRequestObject.open ("HEAD", dataSource) ;

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
obj.innerHTML =
"The file google.html was last modified on " +
XMLHttpRequestObject.getResponseHeader (
"Last-Modified") ;

}
}

XMLHttpRequestObject.send (null) ;

}
}

Chapter 4: Full Throttle Ajax 145

Defeating Caching

One frustrating aspect of developing Ajax applications is browser caching, especially in
Internet Explorer. Caching happens when the browser visits a URL—it stores a copy of the
response from the server and doesn’t actually access the URL again directly, even when you
ask it to.

That’s a problem if you are modifying a web resource—as when you’re developing an
application—or if the web resource gives you different data at different times. For example,
say that you are debugging important_data.php and are downloading text from that PHP file
like this when the user clicks a button:

<body>

<Hl>Reading JavaScript with Ajax</Hl>

<form>
<input type = "button" value = "Get the JavaScript"
onclick = "getData('important data.php) ">
</form>

<div id="targetDiv">
<p>The data will go here.</p>
</divs>

</body>

When you make changes to important_data.php, you want the new data it sends back to the
browser to be used, but when the browser caches that data, you just keep seeing the old data.
To get around that caching, you can change the URL you access slightly by adding a little URL
encoding (which will be ignored by important_data.php). When the browser sees that you’re
accessing a different URL, one that it doesn’t have cached, it will download a fresh copy of the
data from that URL. Here’s what it looks like—note the dummy “?a=5" URL encoding added
to the end of the URL:

<body>

<H1>Reading JavaScript with Ajax</H1l>

<form>
<input type = "button" value = "Get the JavaScript"
onclick = "getData('important data.php?a=5')">
</form>

<div id="targetDiv">
<p>The data will go here.</p>
</div>

</body>

146 Ajox: A Beginner's Guide

The problem with this technique is that once you use the new URL, important_data
.php?a=5, the browser caches that URL too, and you can’t use it again. A better solution is to
use something that will always change, such as the current time, in your URL-encoded text.
Here’s how to do that, using the JavaScript getTime function:

<body>

<Hl1>Reading JavaScript with Ajax</H1>

<form>
<input type = "button" value = "Get the JavaScript"
onclick = "getData ('important data.php?a=' +
new Date() .getTime())">
</form>

<div id="targetDiv">
<p>The data will go here.</p>
</div>

</body>

This code will overcome caching in browsers.

Chapter 5

Using Ajax Frameworks

147

148

Ajax: A Beginner's Guide

Key Skills & Concepts

Building the Ajax Framework library
Creating the downloadText function

Creating the downloadXml function

Creating the postDataDownloadText function
Creating the postDataDownloadXml function
Using the libXmlIRequest Ajax framework
Using the AJAXLib Ajax framework

As you have seen in the previous chapters, programming Ajax can get a little tricky. And

for that reason, you’ll run across dozens of Ajax frameworks online. An Ajax framework
is prewritten code, often JavaScript, that makes using Ajax a snap. All the Ajax programming
is done for you—for example, all you have to do to use Ajax to download text from the server
is to call a function named, say, downloadText. You don’t have to concern yourself with the
details.

We’ll build our own Ajax framework in this chapter, ajaxframework.js (available for free
in the downloadable code for this book), ready for you to plug in and use. The Ajax framework
developed here will use good coding techniques and support multiple XMLHttpRequest
requests. And we’ll also take a look in this chapter at a few of the Ajax frameworks that are
already out there.

Let’s begin by creating ajaxframework.js.

Creating ajaxframework.|s

As you can tell from the .js extension, ajaxframework.js is a JavaScript library of functions.
There are four functions, and they support the four Ajax operations—downloading text with
GET, downloading XML with GET, downloading text with POST, and downloading XML
with POST. Here’s an overview of the four functions you can call in our Ajax framework:

downloadText(url, callbackFunction) Uses the GET method to get text from the server.
downloadXml(url, callbackFunction) Uses the GET method to get XML from the server.

postDataDownload Text(url, dataToSend, callbackFunction) Uses the POST
method to send dataToSend to the server, and gets text back. You pass the data to send in
parameter/value pairs, like this: "value=100".

Chapter 5: Using Ajax Frameworks 149

postDataDownload Xml(url, dataToSend, callbackFunction) Uses the POST method
to send dataToSend to the server, and gets XML back. You pass the data to send in
parameter/value pairs like this: "value=100".

Note that for each function, you pass an URL to call—that’s the URL for the data you want
to download. You also pass a callback function, and our Ajax framework will call that function
with the downloaded data. If you’re going to use POST, you can also send data to the server.

Let’s start this chapter by seeing how to create the downloadText function.

Downloading Text with the downloadText Function

The first function we’ll build in our Ajax framework is the downloadText function, which uses the
GET method to download text from a server. You pass this function the URL from which to fetch
the data using Ajax, and a callback function that it should call back with the downloaded data:

function downloadText (url, callbackFunction)

{

The first order of business is to create an XMLHttpRequest object to use to communicate
with the server behind the scenes—note that we’re creating it inside the downloadText
function, so the upcoming anonymous function will be an inner function. Here’s how we create
an XMLHttpRequest object for Firefox-type browsers (such as Firefox, Netscape, and Safari):

function downloadText (url, callbackFunction)

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;

}

And here’s how we create an XMLHttpRequest object for Internet Explorer:

function downloadText (url, callbackFunction)

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {

150 Ajox: A Beginner's Guide

XMLHttpRequestObject = new
ActiveXObject ("Microsoft.XMLHTTP") ;

Next, we check if we were successful in creating the needed XMLHttpRequest object:

function downloadText (url, callbackFunction)

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;

}

if (XMLHttpRequestObject) {

If the XMLHttpRequest object exists, we can open it to configure that object as follows,
passing the open method the HTTP method ("GET") and the URL to access (which was passed
in the url argument to the downloadText function):

function downloadText (url, callbackFunction)

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;

} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;

}

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", url);

Chapter 5. Using Ajax Frameworks

Next we can set up the anonymous function that will handle the downloaded text:

function downloadText (url, callbackFunction)
{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject)
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", url);

XMLHttpRequestObject.onreadystatechange = function()

And then we check if the download was okay:

function downloadText (url, callbackFunction)
{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;

if (XMLHt tpRequestObject) {
XMLHttpRequestObject.open ("GET", url);

XMLHttpRequestObject.onreadystatechange = function()

{

if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {

151

152 Ajax: A Beginner's Guide

At this point, we know the data was downloaded safely. How do we handle that data? We
have to send that data to the callback function that was passed to the downloadText function

(as the callbackFunction argument). Here’s how we pass the downloaded text to the callback
function:

function downloadText (url, callbackFunction)

{
var XMLHttpRequestObject = false;
if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;
}
if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", url) ;
XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200)
callbackFunction (XMLHttpRequestObject.responseText) ;
}
}
}

Now that we’re done with the XMLHttpRequest object, we can explicitly delete

it if we like. That looks like this, where we delete the object and set the variable
XMLHttpRequestObject to null:

function downloadText (url, callbackFunction)
{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;

Chapter 5. Using Ajax Frameworks

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", url) ;

XMLHttpRequestObject .onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
callbackFunction (XMLHttpRequestObject .responseText) ;
delete XMLHttpRequestObject;
XMLHttpRequestObject = null;

And finally, all that remains is to connect to the server with the XMLHttpRequest object’s
send method:

function downloadText (url, callbackFunction)

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;

}

if (XMLHttpRequestObject)
XMLHttpRequestObject.open ("GET", url) ;

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200)
callbackFunction (XMLHttpRequestObject.responseText) ;
delete XMLHttpRequestObject;
XMLHttpRequestObject = null;
}
}

XMLHttpRequestObject.send (null) ;

153

154 Ajox: A Beginner's Guide

Let’s test the downloadText function now by creating an Ajax-enabled page that uses it.
This page will have two buttons, one of which will download the contents of data.txt:

This text was downloaded with Ajax.
And the other button will download the contents of data2.txt:
This text was also downloaded with Ajax.

We’ll name this page, which tests the downloadText function, downloadText.html. We
start by including ajaxframework.js, which makes the downloadText function accessible to our
JavaScript:

<html>
<head>
<title>Downloading Text With the Ajax Framework Library Pack</title>

<script type = "text/javascript" src = "ajaxframework.js"></script>

Now we can add the two buttons to the test web page:

<form>
<input type = "button" value = "Get message 1"
onclick = "downloadText ('data.txt', callbackMessagel)">
<input type = "button" value = "Get message 2"
onclick = "downloadText ('data2.txt', callbackMessage2)'">
</form>

Note what we’re doing here: we’re passing the downloadText function the URL of the
data to get (which is just "data.txt" or "data2.txt"—we’re making the assumption that data
.txt and data2.txt are in the same directory and on the same server as ajaxframework.js and
downloadText.html, so we can use a relative URL here) and the callback function.

The callback function is named callbackMessagel for button 1 and callbackMessage?2 for
button 2. In these callback functions, we just want to display the downloaded text in a <div>
element that has the ID "targetDiv":

<body>
<Hl>Downloading Text With the Ajax Framework Library Pack</H1>

<form>
<input type = "button" value = "Get message 1"
onclick = "downloadText ('data.txt', callbackMessagel)">

Chapter 5. Using Ajax Frameworks

<input type = "button" value = "Get message 2"
onclick = "downloadText ('data2.txt', callbackMessage2)'">
</form>

<div id="targetDiv">
<p>The fetched data will go here.</p>
</div>

</body>
Here’s what the callback function callbackMessagel looks like:

<script language = "javascript"s
function callbackMessagel (text)

{
}

document.getElementById ("targetDiv") .innerHTML = text;

</scripts>
And here’s what the callback function callbackMessage2 looks like:

<script language = "javascript"s>
function callbackMessagel (text)

{

document .getElementById ("targetDiv") .innerHTML = text;
}
function callbackMessage2 (text)
{
document.getElementById ("targetDiv") .innerHTML = text;
}
</script>

Great; that does it. Here’s the whole page, downloadText.html, that tests the downloadText

function:

<htmls>
<head>
<title>Downloading Text With the Ajax Framework Library Pack</title>

<script type = "text/javascript" src = "ajaxframework.js"s</script>
P yp J P J J P

<script language = "javascript'"s
function callbackMessagel (text)

155

156 Ajox: A Beginner's Guide

{
}

document .getElementById ("targetDiv") .innerHTML = text;

function callbackMessage?2 (text)

{

document .getElementById ("targetDiv") .innerHTML = text;
}
</scripts>
</head>
<body>

<Hl>Downloading Text With the Ajax Framework Library Pack</Hl>

<forms>
<input type = "button" value = "Get message 1"
onclick = "downloadText ('data.txt', callbackMessagel)">
<input type = "button" value = "Get message 2"
onclick = "downloadText ('data2.txt', callbackMessage2)">
</form>

<div id="targetDiv">
<p>The fetched data will go here.</p>
</div>

</body>
</html>

You can see this page at work in Figure 5-1.

When you click button 1, the correct data is indeed downloaded and displayed. We’re in
business—so far so good.

2 Downloading Text With the Ajax Framework Library Pack - Microsoft Internet Explorer

File Edit Wew Favorites Tools Help
Qesck » & - A E | Osearch JoFavorkes @ - % W~ E @ 3
Address |] hitp:jflocalhostichapterS/downloadText himl v EBJee |lnks *

Downloading Text With the Ajax I'ramework Library Pack

[Getmessage 1 I%[Getmessage 2]

This test was downloaded with Ajas.

Figure 5-1 downloadText.html at work

Chapter 5: Using Ajax Frameworks 187

Get downloadText.html to Work

Note that if you want to send data to the server with the HTTP GET method, you have to
URL-encode that data. That works with the downloadText function as well. Here’s a way to
test whether you have access to a server that supports PHP, using the dataresponder.php script

developed in Chapter 3:
<?php
if ($_GET["data"] == "1") {
echo 'The server got a value of 1';
}
if ($_GET["data"] == "2") {

echo 'The server got a value of 2';

}

?>

Connect to this PHP script and send it data by using URL encoding, something like this:

<form>
<input type = "button" value = "Get message 1"
onclick = "downloadText ('dataresponder.php?data=1"',
callbackMessagel) ">
<input type = "button" value = "Get message 2"
onclick = "downloadText ('dataresponder.php?data=2",
callbackMessage2) ">
</forms>

When you click the first button, you should see “The server got a value of 1,” and when
you click the second button, you should see “The server got a value of 2.”

Downloading XML with the downloadXml Function

You can also use the GET method to download XML, using ajaxframework.js’s downloadXml
function (bear in mind that you’ll read all about creating XML in Chapter 6). You pass that
function the URL of your XML on the server, and a callback function that it will pass a
JavaScript XML document to:

function downloadXml (url, callbackFunction)

{

158 Ajax: A Beginner's Guide

As you might expect, we begin the downloadXml function by creating an XMLHttpRequest
object—note that we set the MIME type to text/xml for Firefox-type browsers:

function downloadXml (url, callbackFunction)

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest() ;
XMLHttpRequestObject.overrideMimeType ("text/xml") ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft.XMLHTTP") ;

Then we put that XMLHttpRequest object to work, downloading the requested XML from
the URL passed to the downloadXml function:

function downloadXml (url, callbackFunction)

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
XMLHttpRequestObject.overrideMimeType ("text/xml") ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;
}

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", url) ;

XMLHttpRequestObject.onreadystatechange = function()
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {

Chapter 5: Using Ajax Frameworks 159

After the download is complete, we want to pass the downloaded XML—in the form
of a JavaScript XML document object (as given to us by the XMLHttpRequest object’s
responseXML property)—to the callback function. Here’s how that works—note that we also
connect to the server using the XMLHttpRequest object’s send method:

function downloadXml (url, callbackFunction)

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
XMLHttpRequestObject.overrideMimeType ("text/xml") ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;
}

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", url) ;

XMLHttpRequestObject.onreadystatechange = function()

{

if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
callbackFunction (XMLHttpRequestObject.responseXML) ;
delete XMLHttpRequestObject;
XMLHttpRequestObject = null;

}
}

XMLHttpRequestObject.send (null) ;

}
}

Okay, that completes the downloadXml function. Let’s test it out with a new web page,
downloadXml.html, which will use the downloadXml function to download and display the
data in Chapter 3’s colors.xml:

<?xml version = "1.0" ?>
<colors>
<colorsred</color>
<color>green</colors>
<colors>blue</color>
</colors>

We’ll start downloadXml.html by including the Ajax framework, ajaxframework.js:

<html>
<head>

<title>Downloading XML With the Ajax Framework Library Pack</titles

160 Ajax: A Beginner's Guide

<script type = "text/javascript" src = "ajaxframework.js"></script>

Next, we’ll provide a button in downloadXml.html to allow the user to download

colors.xml:
<form>
<input type = "button" value = "Get the colors"
onclick = "downloadXml ('colors.xml', callback)">
</form>

Note that this button calls the downloadXml function, passing the URL of the XML file to
download, and a callback function simply named callback. When the user clicks this button,
we’ll download colors.xml, decipher it, and display the colors in a <div> element whose ID is
targetDiv:

<body>

<hl>Downloading XML With the Ajax Framework Library Pack</hl>

<form>
<input type = "button" value = "Get the colors"
onclick = "downloadXml ('colors.xml', callback)">
</form>

<div id="targetDiv">The colors will appear here.</div>

</body>
The callback function will be called by the code in ajaxframework.js with a JavaScript
XML document object:
<script language = "javascript"s

function callback (xmlDocument)

{

}

</scripts>

Now we have a JavaScript XML document object to work with, and we have to extract
the <color> elements. We start by getting an array of those elements, which we’ll name colors,
with the getElementsByTagName method:

Chapter 5: Using Ajax Frameworks 161

<script language = "javascript"s>

function callback (xmlDocument)

{

colors = xmlDocument.getElementsByTagName ("color") ;

}

</script>

Now we can set up the text and begin the bulleted list we’ll use to display the colors in the
<div> element:

<script language = "javascript"s>

function callback (xmlDocument)

var obj = document.getElementById('targetDiv') ;

colors = xmlDocument.getElementsByTagName ("coloxr") ;

obj.innerHTML = "Here are the fetched colors:";
</scripts>

And we can loop over each individual color, displaying each one:

<script language = "javascript"s>
function callback (xmlDocument)
{

var obj = document.getElementById('targetDiv') ;

colors = xmlDocument.getElementsByTagName ("color") ;

obj.innerHTML = "Here are the fetched colors:<uls>";

for (loopIndex = 0; loopIndex < colors.length; loopIndex++)
{

}

}

</script>

162 Ajox: A Beginner's Guide

To fetch an individual color, you access the <color> element as colors[loopIndex] in the
loop. Then you can reach the text node that actually contains the text of the color:

<?xml version = "1.0" ?>
<colors>
<colors>red</color>
<color>green</color>
<colorsblue</color>
</colors>

Those text nodes can be accessed as colors[loopIndex].firstChild, and the actual data in the
text nodes (that is, the text of the color itself) can be accessed as colors[loopIndex].firstChild
.data. So here’s how to extract the colors and display them, one by one:

<script language = "javascript"s>

function callback (xmlDocument)
{

var obj = document.getElementById('targetDiv') ;

colors = xmlDocument.getElementsByTagName ("color") ;
obj.innerHTML = "Here are the fetched colors:";
for (loopIndex = 0; loopIndex < colors.length; loopIndex++)

{

obj.innerHTML += "" +
colors[loopIndex] .firstChild.data + "</1li>";

}

obj.innerHTML += "";

}

</script>

Here’s all of downloadXml.html:

<html>
<head>

<title>Downloading XML With the Ajax Framework Library Pack</title>
<script type = "text/javascript" src = "ajaxframework.js"></scripts>
<script language = "javascript'"s

function callback (xmlDocument)
{

var obj = document.getElementById('targetDiv') ;

colors = xmlDocument.getElementsByTagName ("color") ;
obj.innerHTML = "Here are the fetched colors:";
for (loopIndex = 0; loopIndex < colors.length; loopIndex++)

Chapter 5. Using Ajax Frameworks

{
obj.innerHTML += "" +
colors[loopIndex] .firstChild.data + "";
1
obj.innerHTML += "</uls>";
1
</scripts>
</head>
<body>

<hl>Downloading XML With the Ajax Framework Library Pack</hl>

<forms>
<input type = "button" value = "Get the colors"
onclick = "downloadXml ('colors.xml', callback)">
</form>

<div id="targetDiv">The colors will appear here.</div>
</body>
</html>

You can see this page at work in Figure 5-2.
When you click the button, colors.xml is downloaded and displayed. Cool.

3 Downloading XML With the Ajax Framework Library Pack - Microsoft Internet Explorer

File Edit Wew Favorites Tools Help
Qrwk » O - B | Loearh J2Fwnies @ -5 W~ 8B @ 3
Address |] hitp:fjlocalhostichepters{donnoadml.html v B

Links **

Downloading XML With the Ajax Framework Library Pack
Getthe colors I

Here are the fetched colors:

* red

» grecn
w Llue

@ Done

%3 Local intranst

Figure 5-2 downloadXml.html at work

163

164 Ajox: A Beginner's Guide

Get downloadXml.html to Work

Try adding URL encoding to downloadXml.html so that you can assign an argument named
data a value of 1 or a value of 2, and have a different list of colors come back from the server.
You’ll need a new PHP script to do this—here it is, colors.php:

<?php
header ("Content-type: text/xml") ;
if ($_GET["data"] == "1")
Scolors = array('red', 'green',6 'blue');
if ($_GET["data"] == "2")
Scolors = array('orange', 'mavy', 'viridian');

echo '<?xml version="1.0" ?>';
echo '<colorss>';
foreach ($colors as S$Svalue)

{

echo '<colors';
echo S$value;
echo '</colors>';

}

echo '</colors>';
?>

When you send URL-encoded data to this script, it will respond with the set of colors that
you asked for, and the rest of the code in downloadXml.html will display it properly.

Posting Data and Downloading Text
with the postDataDownloadText Function

You can also post data to the server (using POST) and download text using our Ajax framework’s
postDataDownloadText function. You pass the URL, the data you want sent, and the callback
function to this function:

function postDataDownloadText (url, dataToSend, callbackFunction)

{

In the postDataDownloadText function, we start by creating an XMLHttpRequest object:

function postDataDownloadText (url, dataToSend, callbackFunction)

{

var XMLHttpRequestObject = false;

Chapter 5. Using Ajax Frameworks

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest() ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft.XMLHTTP") ;

And then we check if we were successful in creating that object:

function postDataDownloadText (url, dataToSend, callbackFunction)

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;

} else if (window.ActiveXObject) ({
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;

1

if (XMLHttpRequestObject)

And if the XMLHttpRequest object exists, we open it, configuring it with the URL to

access, and telling it to use the POST method:

function postDataDownloadText (url, dataToSend, callbackFunction)

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;

} else if (window.ActiveXObject) ({
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;

1

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("POST", url);

165

166 Ajax: A Beginner's Guide

We also set the Content-Type HTTP header to "application/x-www-form-urlencoded", as
discussed in Chapter 3, when you use POST:

function postDataDownloadText (url, dataToSend, callbackFunction)

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest)
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) ({
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;

}

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("POST", url) ;
XMLHttpRequestObject.setRequestHeader ('Content-Type',
'application/x-www-form-urlencoded') ;

Next, we connect an anonymous function to the XMLHttpRequest object’s
onreadystatechange property:

function postDataDownloadText (url, dataToSend, callbackFunction)

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;

} else if (window.ActiveXObject) ({
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;

}

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("POST", url);
XMLHttpRequestObject.setRequestHeader ('Content-Type',
'application/x-www-form-urlencoded') ;

XMLHttpRequestObject.onreadystatechange = function()

if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {

Chapter 5. Using Ajax Frameworks

When we receive the text back from the server, we can pass it on to the callback function
that the user wants us to use:

function postDataDownloadText (url, dataToSend, callbackFunction)

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;

} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;

}

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("POST", url) ;
XMLHttpRequestObject.setRequestHeader ('Content-Type',
'application/x-www-form-urlencoded') ;

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200)
callbackFunction (XMLHttpRequestObject.responseText) ;
delete XMLHttpRequestObject;
XMLHttpRequestObject = null;

And that’s almost it—all that remains is to use the XMLHttpRequest object’s send method
to post the data to the server:

function postDataDownloadText (url, dataToSend, callbackFunction)

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;

}

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("POST", url) ;
XMLHttpRequestObject.setRequestHeader (' Content-Type',
'application/x-www-form-urlencoded') ;

167

168 Ajax: A Beginner's Guide

XMLHttpRequestObject .onreadystatechange = function()

{

if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200)
callbackFunction (XMLHttpRequestObject.responseText) ;
delete XMLHttpRequestObject;
XMLHttpRequestObject = null;

}
}

XMLHttpRequestObject.send (dataToSend) ;

}
}

Okay, that completes the postDataDownloadText function; let’s give it a try with a new
page, postDataDownloadText.html. In that page, we start by including ajaxframework.js, the
library that includes the postDataDownloadText function:

<head>

<title>Posting Data and Downloading
Text With the Ajax Framework Library Pack</titles>

<script type = "text/javascript" src = "ajaxframework.js"></script>

We’ll display a button that calls the postDataDownloadText function:

<form>

<input type = "button" value = "Get the text"

onclick =

"postDataDownloadText ('repeater.php', 'message=Hello there.', display)">
</form>

Note what’s happening here: we’re calling the postDataDownloadText function with the URL
repeater.php, a data string, and the name of a callback function, display. What does all this mean?

Let’s start with repeater.php. This PHP script just sends back any text you post to it; here is
the PHP code:

<?php
echo ($ POST["message"]) ;
?>

How about the data string we’re passing to the postDataDownloadText function? Here it
is: 'message=Hello there.' We’re passing that string because that’s the kind of data you have to
use with the POST method (see Chapter 3 for more information). This data string connects the
text “Hello there.” with the argument message, which means that repeater.php will be able to
read that text and return it.

Chapter 5: Using Ajax Frameworks 169

The display function is our callback function—that’s the function that will be called back
when the text has been downloaded from the server. In the display function, we can display the
received text in a <div> element, targetDiv:

<script language = "javascript"s>

function display(text)

{
}

document.getElementById('targetDiv') .innerHTML = text;

</scripts>
Here’s what the whole page, postDataDownloadText.html, looks like:

<htmls>
<head>

<title>Posting Data and Downloading Text With the Ajax
Framework Library Pack</titles>

<script type = "text/javascript" src = "ajaxframework.js"></scripts>
<script language = "javascript"s>
function display (text)

{

document .getElementById ('targetDiv') .innerHTML = text;

}

</scripts>
</head>

<body>

<hl>Posting Data and Downloading Text With the Ajax
Framework Library Pack</hl>

<form>

<input type = "button" value = "Get the text"

onclick =

"postDataDownloadText ('repeater.php', 'message=Hello there.', display)">
</forms>

<div id="targetDiv">The fetched text will go here.</div>
</body>
</html>

You can see this page at work in Figure 5-3, where the user has clicked the button and
downloaded the text using the POST method. Not bad.

170

Ajax: A Beginner's Guide

A Posting Data and Downloading Text With the Ajax Framework Library Pack - Microsoft Internet Explorer |._|[Elr)_(|
File Edit ‘iew Favorites Tools Help — -
Qbak » O - H B 0 Poearch “rFavorites € (- % W - E @ 3

Address |@ hittp: fflecalhostchapterSipostDataDovmnloadText . html v Go Links *

Posting Data and Downloading Text With the Ajax
Framework Library Pack

Hello there.

Figure 5-3 postDataDownloadText.html at work

Posting Data and Downloading XML
with the postDataDownloadXml Function

We’ve used GET to download both text and XML, and POST to download text, so there’s one
topic left for ajaxframework.js—downloading XML with POST. That’s handled by a function
named postDataDownloadXml in ajaxframework.js, and we’ll take a look at how to create this
function now.

With POST, we can send data to the server, and we’ll use a PHP script named colors.xml
to return one of two color schemes in XML: one if we post a value of 1 as an argument named
data, and one if we post a value of 2 to this script. Posting data to the server and getting back
XML will let us test the postDataDownloadXml function. Here’s what colors.php looks like—
we start by telling the browser that we’re sending it XML:

<?php
header ("Content-type: text/xml") ;

Then we can read the value of the argument named data—if it’s 1, we’ll use red, green,
and blue as the colors we return to the browser by storing them in a PHP array named $colors
(variables start with a $ in PHP):

<?php
header ("Content-type: text/xml") ;
if ($ POST["data"] == "1")

Chapter 5: Using Ajax Frameworks 171

$colors = array('red', 'green', 'blue');

And color scheme 2 will be orange, navy, and viridian:

<?php
header ("Content-type: text/xml") ;
if ($_POST["data"] == "1")
Scolors = array('red', 'green',6 'blue');
if ($ _POST["data"] == "2")

$colors = array('orange', 'mavy', 'viridian');

?>

Having stored the colors to use in the array named $colors, we can put together the XML
to send back to the user, which looks like this for color scheme 1:

<?xml version = "1.0" ?>
<colors>
<colorsred</color>
<color>green</color>
<colorsblue</colors>
</colors>

and this for color scheme 2:

<?xml version = "1.0" ?>
<colors>
<color>orange</colors>
<color>navy</colors
<colorsviridian</colors
</colors>

To send that XML back to the browser, we start with the XML declaration that starts the
XML document (<?xml version="1.0" 7>):

<?php
header ("Content-type: text/xml") ;
if ($_POST["data"] == "1")
Scolors = array('red', 'green', 'blue');
if ($_POST["data"] == "2")
Scolors = array('orange', 'mavy',k6 'viridian');

echo '<?xml version="1.0" ?>';

172

Ajax: A Beginner's Guide

Then we can echo the document element, <colors>:

<?php
header ("Content-type: text/xml") ;
if ($ _POST["data"] == "1")
Scolors = array('red', 'green', 'blue');
if ($ _POST["data"] == "2")
Scolors = array('orange', 'mavy', 'viridian');

echo '<?xml version="1.0" ?>';
echo '<colors>';

echo '</colors>"';
?>

Then we can use a PHP foreach loop (see Chapter 9) to loop over the $colors array and put
each color into a <color> element:

<?php
header ("Content-type: text/xml") ;
if ($ _POST["data"] == "1")
Scolors = array('red', 'green',6 'blue');
if ($_POST["data"] == "2")
Scolors = array('orange', 'mavy', 'viridian');

echo '<?xml version="1.0" ?>';
echo '<colorss>';
foreach ($colors as $value)

echo '<color>';
echo $value;
echo '</color>';

echo '</colors>';

?>

Great, that completes colors.php. We just post an argument named data, set to 1 or 2, to
this script, and it’ll return color scheme 1 or 2.

Now that we know what the kind of script that the postDataDownloadXml function will be
interacting with looks like, let’s put that function together. We pass the URL to download the
XML from to this function, as well as the data we want to post, and the callback function:

function postDataDownloadXml (url, dataToSend, callbackFunction)

{

Chapter 5: Using Ajax Frameworks 173

As usual, we start by creating an XMLHttpRequest object, and checking if we were
successful in creating it:

function postDataDownloadXml (url, dataToSend, callbackFunction)

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest() ;
XMLHttpRequestObject.overrideMimeType ("text/xml") ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft.XMLHTTP") ;

}

if (XMLEttpRequestObject) {

Then we can open the XMLHttpRequest object, configuring it with the URL the user
wants to access, and specifying the POST method:

function postDataDownloadXml (url, dataToSend, callbackFunction)

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
XMLHttpRequestObject.overrideMimeType ("text/xml") ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;
}

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("POST", url);
XMLHttpRequestObject.setRequestHeader ('Content-Type',
'application/x-www-form-urlencoded') ;

174 Ajox: A Beginner's Guide

Then we can set up the anonymous function that will be called with the XML returned
from the server, which we pass to the user-specified callback function, and finish by sending
the data string the user wants us to send to the server:

function postDataDownloadXml (url, dataToSend, callbackFunction)

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
XMLHttpRequestObject.overrideMimeType ("text/xml") ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;
}

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("POST", url) ;
XMLHttpRequestObject.setRequestHeader ('Content-Type',
'application/x-www-form-urlencoded') ;

XMLHttpRequestObject.onreadystatechange = function()

{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
callbackFunction (XMLHttpRequestObject.responseXML) ;
delete XMLHttpRequestObject;
XMLHttpRequestObject = null;
}
}

XMLHttpRequestObject.send (dataToSend) ;
}
}

And that completes the postDataDownloadXml function in ajaxframework.js. All that
remains now is to test it out, and we’ll do that with a document named postDataDownloadXml
.html. This HTML document will let the user click one of two buttons to download the two
color schemes:

<form>
<input type = "button" value = "Get color scheme 1"
onclick = "postDataDownloadXml ('colors.php', 'data=1', callback)">
<input type = "button" value = "Get color scheme 2"
onclick = "postDataDownloadXml ('colors.php', 'data=2', callback)">

</form>

Chapter 5. Using Ajax Frameworks

Note that we’re calling the postDataDownloadXml function to download the color
schemes in XML—both schemes come from the colors.php script, but for scheme 1,
we post a value of 1, and for scheme 2, we post a value of 2. Here’s what the whole
postDataDownloadXml.html looks like:

<html>
<head>

<title>Posting Data and Downloading Text With the Ajax
Framework Library Pack</titles>

<script type = "text/javascript" src = "ajaxframework.js"s</scripts>
<script language = "javascript'"s>

function callback (xmlDocument)

{

var obj = document.getElementById('targetDiv') ;

colors = xmlDocument.getElementsByTagName ("color") ;
obj.innerHTML = "Here are the fetched colors:";
for (loopIndex = 0; loopIndex < colors.length; loopIndex++)

{

obj.innerHTML +=
"" + colors[loopIndex].firstChild.data + "";

}

obj.innerHTML += "";

}

</scripts>
</head>

<body>

<hl>Posting Data and Downloading Text With the Ajax
Framework Library Pack</hls>

<form>
<input type = "button" value = "Get color scheme 1"
onclick = "postDataDownloadXml ('colors.php', 'data=1', callback)">
<input type = "button" value = "Get color scheme 2"
onclick = "postDataDownloadXml ('colors.php', 'data=2', callback)">
</form>

<div id="targetDiv">Your color scheme will appear here.</divs>
</body>

</html>

175

176 Ajox: A Beginner's Guide

A Posting Data and Downloading Text With the Ajax Framework Library Pack - Microsoft Internet Explorer |:||§|r5__<|
File Edit View Favorites Tools Help If.'
Qiack ~ O - ¥ A 0| Poearch Trravartes 8 | D- & W - L @B @ 3
Address @ http: f{localhost fchapters/postDat aDownloadxml, html V| Go Links **

Posting Data and Downloading Text With the Ajax
Framework Library Pack

[Get color scheme 1] [Get color scheme 2 QJ
Here are the fetched colors:

. orange
. navy

@ Daone ‘g) Local intranet:

Figure 5-4 postDataDownloadXml.html at work

You can see this HTML document, postDataDownloadXml.html, at work in Figure 5-4—just
click a button and the application will use the postDataDownloadXml function to download the
matching color scheme. Nice.

And that completes the ajaxframework.js library, a convenient JavaScript library that
includes these functions:

downloadText(url, callbackFunction)
downloadXml(url, callbackFunction)
postDataDownloadText(url, dataToSend, callbackFunction)

postDataDownloadXml(url, dataToSend, callbackFunction)

Using ajaxframework.js means that you don’t have to write your own Ajax code if you don’t
want to—just include ajaxframework.js in your page and then call the appropriate function.

There are dozens of Ajax frameworks already out there, and we’ll take a look at a couple
of them next.

Using the libXmlIRequest JavaScript Ajax Framework

Among the many Ajax frameworks available is the libXmlRequest JavaScript Ajax framework,
which you can pick up for free at www.whitefrost.com/reference/2008/04/27/libXmlRequest
.html. The JavaScript library itself is libXmIRequest.js, and when you include that file in a
<script> element, you make the functions available in libXmIRequest accessible to your code.

www.whitefrost.com/reference/2008/04/27/libXmlRequest.html
www.whitefrost.com/reference/2008/04/27/libXmlRequest.html

Chapter 5. Using Ajax Frameworks

The libXmIRequest framework centers on two Ajax functions—getXml and postXml. Note
that this library is XML based, and contains a number of functions that let you handle XML.
Here’s an overview of the Ajax functions in the libXmlRequest library:

getXml(url) A synchronous GET request that returns null or an XML document object

getXml(url, callback, 1) An asynchronous GET request that returns 1 if the request was
made successfully, and calls the callback function handler when the XML is downloaded

postXml(url, data) A synchronous POST request that returns null or an XML document
object

postXml(url, data, callback, 1) An asynchronous POST request that returns 1 if the
request was made successfully, and calls the callback function handler when the XML is
downloaded

The callback functions are called with two arguments, and the second argument is the
one we’re interested in, because it contains the downloaded XML—in particular, the xdom
property of that parameter is the XML object that contains the XML data we’ve requested.
Let’s use libXmlRequest to download and read the data in an XML document named hellp
.xml, which just holds the text “Hello from libXmIRequest.”:

<?xml version = "1.0" ?>
<texts>
Hello from libXmlRequest.
</text>

We’ll test libXmlIRequest in an HTML document named libxmlrequest.html. First, we
include libXmlRequest.js:

<html>
<head>
<title>Using the libXmlRequest Ajax framework</titles>

<script src = "libXmlRequest.js"></script>

</html>

Then we add a button that calls the libXmlRequest function to get XML, org.cote.js.xml
.getXml:

<html>
<head>
<title>Using the libXmlRequest Ajax framework</titles>

177

178 Ajax: A Beginner's Guide

<script src = "libXmlRequest.js"></scripts>

<body>

<H1>Using the libXmlRequest Ajax framework</H1l>

<form>
<input type = "button" value = "Get the message"
onclick = "org.cote.js.xml.getXml ('hello.xml', callback, 1)">
</form>
</body>
</html>

This call to org.cote.js.xml.getXml gives the name of our callback function simply as
“callback,” so we’ll add that function now. We just want to extract the text from the <text>
element in the downloaded XML, and we can do that by extracting the <text> element with
the getElementsByTagName method, using the firstChild property to extract the text node
from the <text> element, and then using the data property of the text node to finally reach
the text itself:

<html>
<head>
<title>Using the libXmlRequest Ajax framework</title>
<script src = "libXmlRequest.js"></scripts>
<script language = "javascript"s
function callback(a, b)
var textElement = b.xdom.getElementsByTagName ("text") ;

var div = document.getElementById('targetDiv') ;

div.innerHTML = textElement[0].firstChild.data;

}
</script>
</head>
<body>

<H1>Using the libXmlRequest Ajax framework</H1l>

Chapter 5: Using Ajax Frameworks 179

& | Using the libXmIRequest Ajax framework - Microsoft Internet Explorer.

File Edit View Favorites Tools Help If.'
Qiack - O - ¥ A (0| Poearch rFavartes 8 | D- & W - L @& @ 3
Address @ http: fflocalhost fchapters/libXmiRequest, html V| Go Links **

Using the libXmlRequest A jax framework

Hello from ibXmlEequest.

Figure 5-5 libXmIRequest.html at work

<form>
<input type = "button" value = "Get the message"
onclick = "org.cote.js.xml.getXml ('hello.xml', callback, 1)">
</form>

<div id="targetDiv">
<p>The fetched data will go here.</p>
</div>

</body>
</html>

And that’s it—that completes our example that uses the libXmlRequest library. You can
see this web page at work in Figure 5-5, where it is correctly downloading the hello.xml
document.

Let’s take a look at another Ajax framework now—AJAXLib.

Using the AJAXLib JavaScript Ajax Framework

AJAXLib is a free Ajax framework that you can get at http://karaszewski.com/tools/ajaxlib/.
The actual framework’s JavaScript library is named ajaxlib.js.

This framework is simple to use. You just pass this library’s loadXMLDoc function the
URL to your XML source, the callback function (to call with the downloaded XML), and a
true/false parameter that lets you remove whitespace in the downloaded XML (if you pass a
value of true, AJAXLib will remove indentation whitespace in your XML). After the XML
is downloaded, it will be accessible to your JavaScript code in a JavaScript variable named
resultXML.

http://karaszewski.com/tools/ajaxlib/

180 Ajax: A Beginner's Guide

Let’s put this framework to work in an example named ajaxlib.html, using AJAXLib to
download and extract the text “Hello from AJAXLib.” from a document named hello2.xml:

<?xml version = "1.0" ?>
<text>

Hello from AJAXLib.
</text>

The ajaxlib.html web page begins with a button to download hello2.xml, and indicates that
the callback function is just named callback:

<form>
<input type = "button" value = "Get the message"
onclick = "loadXMLDoc ('hello2.xml', callback, false)">
</form>

In the callback function, we can make use of the JavaScript XML document object that
will be stored in the resultXML variable to extract the text in hello2.xml. Here’s what it looks
like in ajaxlib.html:

<html>
<head>
<title>Using the AJAXLib Ajax framework</title>
<script src = "ajaxlib.js"s</scripts>
<script language = "javascript"s>
function callback()
{
var xmlData = resultXML.getElementsByTagName ("text") ;
var div = document.getElementById('targetDiv') ;

div.innerHTML = xmlData[0].firstChild.data;

}
</scripts>
</head>
<body>

<H1>Using the AJAXLib Ajax framework</H1>

<form>
<input type = "button" value = "Get the message"
onclick = "loadXMLDoc ('hello2.xml', callback, false)">

</form>

Chapter 5: Using Ajax Frameworks 181

& | Using the AJAXLib Ajax framework - Microsoft Internet Explorer

File Edit View Favorites Tools Help

Qiack ~ O - ¥ A (0| Poearch TrFavartes 8 | @- & W - @& @ 3

Address @ http: fflocalhost fchaptersfalaxLib, html

Using the AJAXLib Ajax framework

Hello from ATAH b,

Figure 5-6 AJAXLib.html at work

<div id="targetDiv">

<p>The fetched data will go here.</p>
</div>

</body>
</html>

And you can see the results in Figure 5-6—when the user clicks the button, the new
message is indeed downloaded and displayed by AJAXLib. Cool.

This page intentionally left blank

Chapter 6

Handling XML in Ajax

183

184 Ajax: A Beginner's Guide

Key Skills & Concepts

Working with XML in JavaScript
Navigating through XML documents
Retrieving XML element data

Retrieving XML element attribute data

The x in Ajax stands for XML, and this chapter is all about working with XML in Ajax
applications. The bulk of the material in this chapter has to do with using XML in JavaScript,
because, as you’ve already seen, doing so is not straightforward by any means. But you’re going
to gain valuable experience in XML handling in JavaScript in this chapter.
We’ll start with a discussion of how XML works (this book assumes you know HTML, but
doesn’t make the same assumption about XML).

Building Some XML

Writing your own XML is a lot like writing your own HTML—you use tags, elements, and
attributes, just as you do in HTML. The crucial difference is that in XML, you make up your
own element names. For example, here’s what an HTML document might look like, using the
predefined element names in HTML 4.01:

<html>
<head>
<title>The Report</titles>
</heads>

<body>
<hl1>The Report</hl>
All Quiet on the Western Front.
</body>
<html>

This is fine as far as it goes, but what if you want to store your own private data? For
example, say that you want to create a document that lets you keep track of your friends?
There is no <friend> element in HTML, and no <first_name> or <last_name> element. But
you can make up and use those elements in XML—no problem.

Chapter 6: Handling XML in Ajox 185

Here’s what such a document might look like in XML—note that you’re storing
information about three friends here:

<?xml version="1.0"?>
<friends>
<friend>
<first name>Cary</first names>
<last_name>Grant</last_ name>
</friend>
<friend>
<first name>Myrna</first names>
<last_name>Loy</last_ name>
</friend>
<friend>
<first name>James</first names>
<last_name>Stewart</last name>
</friend>
</friends>

You’re free to use your own element names in XML, as long as they are legal element
names syntactically. There are two sides to that coin: while browsers can be programmed to
understand HTML elements and display your HTML document accordingly, you have to take
extra steps with XML. That is, XML documents are all about storing data, not presenting
that data visually (like HTML), and that means you have to provide a way of extracting that
data and working with it yourself. That’s where JavaScript is going to come into play in
this chapter—you’re going to see how to use JavaScript to read and navigate through XML
documents in this chapter. Using your own programming (a step not necessary with HTML),
you can extract the data in an XML document and make use of that data.

There are some XML rules here that you should know about, and we’ll take a look at them
now. We’ll start by constructing an XML document from scratch that will document the people
present at a party—in this case, a party given on the occasion of a snow day, when school has
been cancelled.

First, you must start all XML documents with an XML declaration, which looks like this:

<?xml version="1.0" ?>

This is an XML declaration, not an XML element, and it must be the first line in your XML
document. The version attribute is required, and you can set it to "1.0" (the most common
version, and the version we’ll use) or "1.1". Besides the version attribute, you can also include
the standalone attribute (set to "no" if this document includes other XML documents in it, "yes"
otherwise) and the encoding attribute (set to the character encoding you’re using—you can, for
example, specify that you’re using Japanese characters, or Russian characters). The default for

186 Ajax: A Beginner's Guide

the encoding is the UTF-8 character set, which is what WordPad and other standard editors use
(actually, they use a subset of UTF-8):

<?xml version="1.0" standalone="yes" encoding="UTF-8" ?>

Next up in an XML document are the elements that contain the data in the document. You
make up your own tag names in XML, but there are some rules about what tag names are
legal. Tag names can’t start with a number, can’t contain spaces, and can’t contain a few other
illegal characters, such as quotation marks or spaces. Here are some illegal tag names:

<l2steps>
<big dog>
<llokll>

The first element in a document is the document element. In XML documents, one element
encloses all the other elements, and that element is called the document element. In the case
of our snow-day party example, we might call the document element <parties> so that we can
keep track of a number of parties:

<?xml version="1.0"?>
<parties>

</parties>

Every other element in the XML document must be contained within this document
element, so, for example, if you want to keep track of the attendees at three different parties,
you can have three <party> elements enclosed inside the <parties> element:

<?xml version="1.0"?>
<partiess>
<party>

</party>
<party>

</party>
<party>

</party>
</parties>

Chapter 6: Handling XML in Ajax 187

So you see that, just like HTML, XML elements can contain other XML elements. In fact,
you can also have empty elements, just as you can in HTML (the element is an example
of an empty element in HTML). Empty elements have no content: no nested elements, no
nested text. In XML, you end an empty element with the markup />, so, for example, if you
have empty elements named <afternoon /> and <evening />, you can indicate when a party
took place by using these elements:

<?xml version="1.0"?>
<parties>
<party>
<afternoon />

</party>
<party>
<evening />

</party>
<party>
<afternoon />

</party>
</parties>

XML elements can also include attributes, just as HTML elements can. Attributes can
appear in the opening tags of elements, or inside empty elements, and they’re name/value
pairs. For example, say that you want to give the <party> element a type attribute, indicating
that the party is a winter party; you can do that like this:

<?xml version="1.0"?>
<parties>
<party type="winter">

</party>
</parties>

In XML (unlike HTML), you always have to assign attributes a value—in this example,
type is the attribute name, and "winter" is the attribute value. The attribute value must always
be inside quotation marks.

188 Ajax: A Beginner's Guide

Besides other elements, you can enclose text inside XML elements. Here’s what that might
look like in our full party example (this is party.xml):

<?xml version="1.0"7?>
<parties>
<party type="winter">
<party title>Snow Day</party title>
<party number>63</party number>
<subject>No school today!</subject>
<date>2/2/2009</date>
<people>
<person attendance="present">
<first name>Ralph</first name>
<last name>Kramden</last name>
</person>
<person attendance="absent">
<first name>Alice</first name>
<last name>Kramden</last name>
</person>
<person attendance="present">
<first name>Ed</first_ name>
<last name>Norton</last name>
</person>
</people>
</party>
</parties>

Now you’re getting the idea. XML is actually pretty simple to construct, but there are
pitfalls. The XML document that we’ve constructed is an example of a so-called well-formed
XML document. However, it’s easy to slip up, making your XML document not well formed—
and XML-aware software, like browsers, are going to give you errors if your XML is not well
formed. Not nesting the XML elements properly is the primary well-formedness error. For
example, this version of our example XML document, where one <person> element hasn’t
ended before another one starts, would not be read by a browser because of the nesting error:

<?xml version="1.0"?>
<parties>
<party type="winter"s
<party title>Snow Day</party titlex>
<party number>63</party number>
<subject>No school today!</subjects>
<date>2/2/2009</date>
<people>
<person attendance="present'"s
<first name>Ralph</first namex>
<last names>Kramden</last namex>
<person attendance="absent">
</person>

Chapter ¢: Handling XML in Ajox

<first name>Alice</first name>
<last name>Kramden</last namex>
</person>
<person attendance="present'"s>
<first name>Ed</first namex>
<last _names>Norton</last names>
</person>
</people>
</party>
</parties>

That kind of error is obvious, but what about the more subtle ones? Can you spot the error
in the following version of our document?

<?xml version="1.0"7?>
<parties>
<party type="winter">
<party title>Snow Day</party titles>
<party numbers>63</party number>
<subject>No school today!</subject>
<date>2/2/2009</date>
<people>
<person attendence="present">
<first name>Ralph</first name>
<last_name>Kramden</last name>
<person attendance="absent"s>
</person>
<first_name>A1ice</first_name>
<last_name>Kramden</last name>
</person>
<person attendance="present"s>
<first_name>Ed</first_ name>
<last_name>Norton</last name>
</person>
</people>
</partys>
</parties>

The error is that the attendance attribute is spelled “attendence” in the first <person>
element. The document is well formed, but it’s not correct. So in addition to well-formedness,
XML documents can also be checked for validity. To check if an XML document is valid,
you have to specify the legal syntax of your document. For example, can a <friend> element
contain a <people> element? What attributes does a <party> element have? And so on.

There are two methods to check the validity of XML documents: XML Document
Type Definitions (DTD) and XML Schema. Each lets you specify the syntax rules of
your XML document, and of the two, XML Schema is the newest and the most powerful.

189

190

Ajax: A Beginner's Guide

Unfortunately, the browser you work with may not support XML Schema (the support in Internet
Explorer is problematic), so you might want to stick to the older way of specifying the syntax of
XML documents, DTDs, if you want to ensure that your document is checked for validity (we’ll
see an example near the end of this chapter—note that you do not have to check for validity to
use XML in Ajax). Here’s what a DTD for our example XML document looks like:

<?xml version="1.0"7?>
<!DOCTYPE parties [
<!ELEMENT parties (party¥*)>
<!ELEMENT party (party title, party number, subject, date, people*)>
< ! ELEMENT party_title (#PCDATA) >
<!ELEMENT party number (#PCDATA) >
<!ELEMENT subject (#PCDATA) >
<!ELEMENT date (#PCDATA) >
< ! ELEMENT first_name (#PCDATA) >
<!ELEMENT last name (#PCDATA) >
<!ELEMENT people (person*)>
<!ELEMENT person (first name,last name) >
<!ATTLIST party
type CDATA #IMPLIED>
<!ATTLIST person
attendance CDATA #IMPLIED>
1>
<parties>
<party type="winter">
<party titles>Snow Day</party titles>
<party numbers>63</party number>
<subject>No school today!</subjects>
<date>2/2/2009</date>
<peoples>
<person attendance="present'"s>
<first name>Ralph</first name>
<last name>Kramden</last name>
</person>
<person attendance="absent"s>
<first names>Alice</first name>
<last name>Kramden</last name>
</person>
<person attendance="present'"s>
<first name>Ed</first namex>
<last_name>Norton</last name>
</person>
</people>
</party>
</parties>

Chapter ¢: Handling XML in Ajox

If you’re interested in ensuring the validity of your XML documents, check out an XML
book that covers DTDs and XML Schema.

Okay, that gives you a good XML foundation. Let’s get started handling XML in
JavaScript, as you’re likely to do in Ajax applications.

Working with XML in JavaScript

To see how to work with XML in JavaScript, you have to understand how JavaScript sees
XML. JavaScript sees XML in terms of nodes. Take this XML document as an example:

<?xml version="1.0" ?>
<document >
<greeting>
Welcome to XML
</greeting>
<texts>
Hello there!
</text>
</document >

In this case, the <document> node has two child nodes, the <greeting> and <text>
nodes. These nodes are sibling nodes of each other. Both the <greeting> and <text> elements
themselves have one child node—a text node that holds character data. Looked at as a tree of
nodes, this is what this document looks like:

<document >

<greeting> <text>

Welcome to XML Hello there!

To JavaScript, an XML document is constructed of nodes—and not just element nodes,
either. There are text nodes, attribute nodes, and so on. Table 6-1 diplays the node types (the
numbers are the numbers that JavaScript has assigned to each type of node).

JavaScript has built-in properties you can use to work with the nodes in XML documents
(like the document object that’s returned in the XMLHttpRequest object’s response XML
property), shown in Table 6-2.

Note in particular that the nodeType property holds the type of a node. You’ll see how to
use these properties in JavaScript in this chapter.

It’s time to sling some code, and we’ll start by extracting the document element from our
example XML document, party.xml.

191

192 Ajax: A Beginner's Guide

Number Node type

1 Element node

2 Attribute node

3 Text node

4 CDATA (XML character data) section node
5 XML entity reference node

6 XML entity node

7 XML processing instruction node
8 XML comment node

9 XML document node

10 XML DTD node

11 XML document fragment node
12 XML notation node
Table 6-1 Node Types

Property Means

attributes Attributes by this node
childNodes Array of child nodes
documentElement The document element
firstChild First child node

lastChild Last child node

localName Local name of the node
name Name of the node
nextSibling Next sibling node
nodeName Name of the node

nodeType Node type

nodeValue Value of the node
previousSibling Previous sibling node

Table 6-2 JavaScript Properties You Can Use to Work with Nodes

Chapter 6: Handling XML in Ajox 193

Getting the Document Element

Getting the document element—the element that contains all the other elements in an XML
document—is usually the first step in working with XML documents. We’ll now see how to
extract the document element in an example named documentElement.html.

The documentElement.html example will read in our party.xml document and display the
document element, which is <parties>. We start this application with a button:

<body>

<hl>Getting the Document Element</hl>

<form>
<input type = "button" value = "Get the document element"
onclick = "getDocumentElement () ">

</form>
</body>
When the user clicks this button, the browser calls a JavaScript function named

getDocumentElement:
<script language = "javascript"s>

function getDocumentElement ()

{

}

</scripts>

Okay, we want to read in the party.xml document here, using Ajax techniques. We start by
creating a new XMLHttpRequest object:

<script language = "javascript"s>

function getDocumentElement ()

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft.XMLHTTP") ;

194 Ajox: A Beginner's Guide

}

</scripts>

And if we were successful in creating that object, we configure XMLHttpRequestObject to
access the party.xml document using the HTTP GET method:

<script language = "javascript"s

function getDocumentElement ()

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;
}

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", "party.xml", true);

}
}
</scripts>
Then we add the anonymous function to download party.xml:

<script language = "javascript"s>

function getDocumentElement ()

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;

}

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", "party.xml", true);

XMLHttpRequestObject.onreadystatechange = function/()

Chapter ¢: Handling XML in Ajox

{

if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {

}
}

</script>

After the download, we can get the XML as a JavaScript XML object from the
XMLHttpRequest object’s response XML property. Then we can use that object’s
documentElement property to get the document element:

<script language = "javascript"s>

function getDocumentElement ()

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;

} else if (window.ActiveXObject) {
XMLHttpRequestObject = new

ActiveXObject ("Microsoft .XMLHTTP") ;

}

if (XMLHttpRequestObject)

XMLHttpRequestObject.open ("GET", "party.xml", true);

XMLHttpRequestObject.onreadystatechange

= function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200)

var xmlDocument = XMLHttpRequestObject.responseXML;

var documentElement = xmlDocument.documentElement;

}
}

</scripts>

195

196 Ajax: A Beginner's Guide

Now we have the document element, and it’s stored as a JavaScript element object. That
one object contains all the other elements in the document. How do we confirm that we’ve
gotten the document element, <parties>? We can print it out like this, using the nodeName
property of the documentElement object (note that we write < as <, which is how you write
markup that you want browsers simply to display, not react to as HTML):

<script language = "javascript"s>

function getDocumentElement ()

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject)
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;
}

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", "party.xml", true);

XMLHttpRequestObject.onreadystatechange = function()

{
if (XMLHttpRequestObject.readyState == 4 &&

XMLHttpRequestObject.status == 200) {

var xmlDocument = XMLHttpRequestObject.responseXML;

var documentElement = xmlDocument.documentElement;

if (documentElement) {

document.getElementById ("targetDiv") .innerHTML =

"The document element is <" +
documentElement.nodeName + ">.";

}
}
}

XMLHttpRequestObject.send (null) ;
}
}
</scripts>
And that’s it—here’s the whole web page, documentElement.html:

<html>
<head>

<title>Getting the Document Element</title>
<script language = "javascript"s>

function getDocumentElement ()

Chapter ¢: Handling XML in Ajox

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", "party.xml", true);

XMLHttpRequestObject .onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200)
var xmlDocument = XMLHttpRequestObject.responseXML;
var documentElement = xmlDocument.documentElement;
if (documentElement) {
document .getElementById ("targetDiv") .innerHTML =
"The document element is <" +
documentElement .nodeName + ">.";

XMLHttpRequestObject.send (null) ;
}
}

</scripts>
</heads>
<body>

<hl>Getting the Document Element</hl>

<form>
<input type = "button" value = "Get the document element"
onclick = "getDocumentElement () ">
</form>

<div id="targetDiv" width =100 height=100>
The result will appear here.
</divs>

</body>

</html>

197

198

| Getting the Document Element - Microsoft Internet Explorer |:||E|rz|
File Edit ‘Wiew Favorites Tools Help ﬂ'
Qobak - & - B (& Psearch rravorites @ | @2- &% W - E @ 3

Address @ http:f flocalhost{chapters/dacumentElement. hkml V| Go Lirks **

Ajax: A Beginner's Guide

Getting the Document Element

| Getthe docurment element R’]

The document element is <parties=.

Figure 6-1 documentElement.html at work

You can see the results in Figure 6-1, where the application has correctly retrieved the
document element of party.xml.

We’re making progress—we’ve extracted and read the document element of an XML
document. Now how about accessing any element in the XML document?

Get the Number of Children of the

Document Element

Want to find out how many child elements the document element has? Modify
documentElement.html now to do that. You can use the childNodes property of the
documentElement object to do this. That property holds an array that contains all the child
nodes of the document element, and you can determine the length of that array—and hence the
number of children of the document node—with the array’s length property:

"The document element has " + documentElement.childNodes.length + "
children.";

Note that the document element, <parties>, has only one direct child node, <party>,
in our party.xml example, which you should see when you run the modified form of
documentElement.html.

Chapter 6: Handling XML in Ajox 199

Accessing Any XML Element

We’ve been able to access the document element in party.xml in JavaScript, after downloading
party.xml using Ajax. But what if we want to access other elements in party.xml? For example,
what if we want to access the third guest at the party and retrieve their first (Ed) and last
(Norton) names?

<?xml version="1.0"?>
<parties>
<party type="winter"s
<party titles>Snow Day</party titles>
<party number>63</party number>
<subject>No school today!</subjects>
<date>2/2/2009</date>
<people>
<person attendance="present'"s
<first name>Ralph</first name>
<last name>Kramden</last namex>
<person attendance="absent"s>
</person>
<first names>Alice</first name>
<last name>Kramden</last namex>
</person>
<person attendance="present'"s
<first name>Ed</first namex>
<last_name>Norton</last name>
</person>
</people>
</party>
</parties>

Can you access the third guest using JavaScript? You sure can, and we’ll take a look at
how that works in a new example, party.html, now. This application starts with a button that,
when clicked, calls a function named getData:

<body>

<hl>Retrieving the Third Guest From party.xml</hl>

<form>
<input type = "button" value = "Get the third guest"
onclick = "getData()">
</form>

<div id="targetDiv" width =100 height=100>
Who was the third guest?
</div>

</body>

200 Ajax: A Beginner's Guide

In the getData function, we can create an XMLHttpRequest object:

<script language = "javascript"s>

function getData ()

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest() ;
XMLHttpRequestObject.overrideMimeType ("text/xml") ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft.XMLHTTP") ;

}

</scripts>

Then we can use that XMLHttpRequest object to download party.xml using Ajax, get
party.xml in JavaScript XML object form from the XMLHttpRequest object’s response XML
property, and pass that XML object on to another function named displayGuest:

<script language = "javascript"s>

function getData ()

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
XMLHttpRequestObject.overrideMimeType ("text/xml") ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;
}

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", "party.xml", true);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
var xmlDocument = XMLHttpRequestObject.responseXML;

Chapter ¢: Handling XML in Ajox

displayGuest (xmlDocument) ;
}
}

XMLHttpRequestObject.send (null) ;
}
}

</script>

OK, now we’ve passed the XML object containing the XML data we want to work with to
a function named displayGuest:

<script language = "javascript"s>
function displayGuest (xmldoc)
{
}

</scripts>

We start navigating through the XML document to the third guest by getting the document
element for party.xml:

<script language = "javascript"s
function displayGuest (xmldoc)

{

var partiesNode;

partiesNode = xmldoc.documentElement;

}

</scripts>

Okay, now that we’ve got the document element, how do we navigate to the third guest?
We use navigation properties like these, which are supported by all element node objects
(including the document element node):

childNodes Array of child nodes
firstChild First child node
lastChild Last child node
nextSibling Next sibling node
previousSibling Previous sibling node

201

202 Ajax: A Beginner's Guide

For example, the <party> element node is the first (and only) child of the <parties> node:

<?xml version="1.0"?>
<parties>
<party type="winter">
<party title>Snow Day</party titlex>
<party number>63</party number>
<subject>No school today!</subjects>
<date>2/2/2009</date>
<people>
<person attendance="present'"s
<first name>Ralph</first name>
<last name>Kramden</last name>
<person attendance="absent"s>
</person>
<first name>Alice</first name>
<last name>Kramden</last name>
</person>
<person attendance="present'"s>
<first name>Ed</first namex>
<last_name>Norton</last name>
</person>
</people>
</party>
</parties>

Since we have an object corresponding to the <parties> document element node already
(partiesNode), we can access the <party> child node like this in the displayGuest function:

<script language = "javascript"s>

function displayGuest (xmldoc)

{

var partiesNode, partyNode;

partiesNode = xmldoc.documentElement;
partyNode = partiesNode.firstChild;

}

</script>

The third guest is stored inside the <people> element, and the <people> element is the last
child element of the <party> element, so we can access it with the <party> element’s lastChild
property:

<script language = "javascript"s>
function displayGuest (xmldoc)

{
var partiesNode, partyNode, peopleNode;
var firstNameNode, lastNameNode, displayText;

Chapter 6: Handling XML in Ajox 203

partiesNode = xmldoc.documentElement;
partyNode = partiesNode.firstChild;
peopleNode = partyNode.lastChild;

}

</scripts>

Now we’ve reached the <people> element. The <person> element we’re interested in is the
last child of the <people> element, so we can access that third <person> node like this:

<script language = "javascript"s>
function displayGuest (xmldoc)
var partiesNode, partyNode, peopleNode;
var firstNameNode, lastNameNode, displayText;

partiesNode = xmldoc.documentElement;
partyNode = partiesNode.firstChild;
peopleNode = partyNode.lastChild;
personNode peopleNode.lastChild;

}

</scripts>

Almost there. Now we have to access the <first_name> and <last_name> elements inside
the <person> element. The <first_name> element is the first child of the <person> element, so
we grab it like this:

<script language = "javascript"s>
function displayGuest (xmldoc)
var partiesNode, partyNode, peopleNode;
var firstNameNode, lastNameNode, displayText;

partiesNode = xmldoc.documentElement;
partyNode = partiesNode.firstChild;
peopleNode = partyNode.lastChild;
personNode = peopleNode.lastChild;
firstNameNode = personNode.firstChild;

}

</script>

204 Ajax: A Beginner's Guide

The <last_name> element is the last child of the <person> element, so we could use the
lastChild property of the personNode object to access it, but for variety, noting that the <last_name>
element is a sibling of (that is, an element on the same level as) the <first_name> node, we can also
access the <last_name> element as using the <first_name> element’s nextSibling property:

<script language = "javascript"s>
function displayGuest (xmldoc)

{

var partiesNode, partyNode, peopleNode;
var firstNameNode, lastNameNode, displayText;

partiesNode = xmldoc.documentElement;
partyNode = partiesNode.firstChild;
peopleNode = partyNode.lastChild;
personNode = peopleNode.lastChild;
firstNameNode = personNode.firstChild;
lastNameNode = firstNameNode.nextSibling;

}

</scripts>

Whew. Now we’ve got two objects corresponding to the <first_name> and <last_name>
elements—firstNameNode and lastNameNode. It took some effort to get here, but we got those
objects.

So how do you extract the actual guest’s name from the <first_name> and <last_name>
elements? The first and last names are stored as text nodes inside these elements:

<person attendance="present'"s>
<first name>Ed</first name>
<last_name>Norton</last name>
</person>

And you can reach the text nodes, because they’re the first child nodes of the <first_
name> and <last_name> elements. So the text nodes containing the first and last names are
firstNameNode.firstChild and lastNameNode.firstChild.

Are we done? Nope. The text nodes are themselves simply objects—you can’t display
them in a web page. To actually access the text in a text node, you have to use the text node’s
nodeValue property. So, finally, you can access the third guest’s first name as firstNameNode
firstChild.nodeValue and their last name as lastNameNode.firstChild.nodeValue. Here’s what
it looks like in code:

<script language = "javascript"s>

function displayGuest (xmldoc)

{

var partiesNode, partyNode, peopleNode;
var firstNameNode, lastNameNode, displayText;

Chapter ¢: Handling XML in Ajox

partiesNode = xmldoc.documentElement;
partyNode = partiesNode.firstChild;
peopleNode = partyNode.lastChild;
personNode = peopleNode.lastChild;
firstNameNode = personNode.firstChild;
lastNameNode = firstNameNode.nextSibling;

displayText = "The third guest was " +
firstNameNode.firstChild.nodeValue + ' '
+ lastNameNode.firstChild.nodeValue;

var target = document.getElementById("targetDiv");
target.innerHTML=displayText;
}

</scripts>

Here’s the whole application, party.html:

<html>
<head>

<title>Retrieving the Third Guest From party.xml</title>
<script language = "javascript"s>

function getData ()

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
XMLHttpRequestObject.overrideMimeType ("text/xml") ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;

}

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", "party.xml", true);

XMLHttpRequestObject.onreadystatechange = function/()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200)
var xmlDocument = XMLHttpRequestObject.responseXML;
displayGuest (xmlDocument) ;

}
}

205

206 Ajax: A Beginner's Guide

XMLHttpRequestObject.send (null) ;

}
}

function displayGuest (xmldoc)
{
var partiesNode, partyNode, peopleNode;
var firstNameNode, lastNameNode, displayText;

partiesNode = xmldoc.documentElement;
partyNode = partiesNode.firstChild;
peopleNode = partyNode.lastChild;
personNode = peopleNode.lastChild;
firstNameNode = personNode.firstChild;
lastNameNode = firstNameNode.nextSibling;

displayText = "The third guest was " +
firstNameNode.firstChild.nodeValue + ' '
+ lastNameNode.firstChild.nodeValue;

var target = document.getElementById("targetDiv") ;
target.innerHTML=displayText;

}
</scripts>
</heads>
<body>

<hl>Retrieving the Third Guest From party.xml</hl>

<form>
<input type = "button" value = "Get the third guest"
onclick = "getData()">
</form>

<div id="targetDiv" width =100 height=100>
Who was the third guest?
</divs>

</body>

</html>

You can see this application at work in Figure 6-2, where it is correctly identifying Ed
Norton as the third guest. Voila.

So far so good—except that there’s a problem. This example as written will work in
Internet Explorer, but not in Firefox. What’s wrong?

Chapter 6: Handling XML in Ajax 207

A Retrieving the Third Guest From party.xml - Microsoft Internet Explorer

File Edit ‘Wiew Favorites Tools Help ﬁ'
aBack @ 0 =2 @ @ I;:\J ,OSearch <7 Favorites 42 E’{Iv & Iﬁ—l - ﬁ D 3
Address @ http:f flocalhost{chapters/party, html V| Go Lirks **

Retrieving the Third Guest From party.xml

[Getthe third guest L\\L

The third guest was Ed Norton

Figure 6-2 party.html at work

Find the Second Guest

Want to find the second guest’s name? All you need to do is navigate to that person’s <person>

element. You can do that by navigating backward one sibling from the last <person> element,
like this:

function displayGuest (xmldoc)
{
var partiesNode, partyNode, peopleNode;
var firstNameNode, lastNameNode, displayText;

partiesNode = xmldoc.documentElement;
partyNode = partiesNode.firstChild;
peopleNode = partyNode.lastChild;
personNode = peopleNode.lastChild;
personNode = personNode.previousSibling;
firstNameNode = personNode.firstChild;
lastNameNode = firstNameNode.nextSibling;

displayText = "The second guest was " +
firstNameNode.firstChild.nodeValue + ' '
+ lastNameNode.firstChild.nodeValue;

var target = document.getElementById("targetDiv") ;
target.innerHTML=displayText;

}

Give this a try and confirm that you do get the second guest’s name. And then try to get the
first person’s name.

208 Ajax: A Beginner's Guide

Handling Whitespace in Firefox

When it comes to whitespace, Firefox by default acts differently than Internet Explorer. In
Firefox, whitespace that you use to indent the elements in your XML counts as text nodes.
So when navigating, we have to take all the whitespace nodes into account in Firefox, by
default. For example, suppose we have an object corresponding to the <parties> element, say
partiesNode:

<?xml version="1.0"?>
<parties>
<party type="winter"s
<party titles>Snow Day</party titles>
<party number>63</party number>
<subject>No school today!</subjects>
<date>2/2/2009</date>
<people>
<person attendance="present'"s
<first name>Ralph</first name>
<last name>Kramden</last namex>
<person attendance="absent"s>
</person>
<first names>Alice</first name>
<last name>Kramden</last namex>
</person>
<person attendance="present'"s
<first name>Ed</first namex>
<last_name>Norton</last name>
</person>
</people>
</party>
</parties>

What if we want to navigate to the <party> element? You might think that partiesNode
firstChild would do the trick, but not here. The expression partiesNode.firstChild would take
you to the first child of the <parties> element node, and in Firefox, that’s the text node used to
indent the <party> element:

<?xml version="1.0"?>

<parties>

XXXX<party type="winter"s
<party title>Snow Day</party titlex>
<party number>63</party number>

So to get to the <party> element, you actually have to get to the text node’s next sibling.
That means that the correct JavaScript is partyNode = partiesNode.firstChild.nextSibling:

Chapter ¢: Handling XML in Ajox

<?xml version="1.0"7?>
<parties>
xxxx<party type="winter">

Similarly, to get to the <party_title> element node, you’d use partyNode.firstChild

<party titles>Snow Day</party titles>
<party numbers>63</party numbers>

.nextSibling to skip over the indentation whitespace text node:

<?xml version="1.0"?>
<parties>
<party type="winter"s

So you can use the nextSibling and previousSibling properties to navigate over whitespace
text nodes, but it’s a pain. Here’s what the displayGuest function turns into when you take into

<party title>Snow Day</party title>
<party number>63</party number>

account the default whitespace handling in Firefox:

function displayGuest (xmldoc)

{

var partiesNode, partyNode, peopleNode;

var personNode, firstNameNode, lastNameNode, displayText;

partiesNode = xmldoc.documentElement;

partyNode = partiesNode.firstChild.nextSibling;

peopleNode = partyNode.lastChild.previousSibling;

personNode = peopleNode.firstChild.nextSibling
.nextSibling.nextSibling.nextSibling.nextSibling;

firstNameNode = personNode.firstChild.nextSibling;

lastNameNode = firstNameNode.nextSibling.nextSibling;

displayText = "The third guest is: " +
firstNameNode.firstChild.nodevValue + ' '
+ lastNameNode.firstChild.nodeValue;

var target = document.getElementById("targetDiv") ;
target.innerHTML=displayText;

209

210 Ajax: A Beginner's Guide

This looks like a mess—it’s bad enough having to navigate from element to element, but
now we have to navigate over text nodes as well? Isn’t there a better way?

Handling Cross-Browser Whitespace

There is a better way—for example, you can strip out indentation whitespace before
Firefox gets its hands on it. To do that, we might write a JavaScript function named
removeWhitespace, which is passed a JavaScript XML document object:

function removeWhitespace (xml)

{

}

We can set up a loop over all nodes in the XML document object by looping over all
child nodes:

function removeWhitespace (xml)

{

var loopIndex;

for (loopIndex = 0; loopIndex < xml.childNodes.length;
loopIndex++) {

)
)
}

And we get the current node in the loop from the childNodes property, which holds an
array of child nodes:

function removeWhitespace (xml)

{

var loopIndex;

for (loopIndex = 0; loopIndex < xml.childNodes.length;
loopIndex++) {

var currentNode = xml.childNodes [loopIndex];

Chapter 6: Handling XML in Ajax 211

If the current node is an element node, which we can check by seeing if its nodeType
property equals 1 (see Table 6-1), it might have child nodes—and we’ve got to remove
the whitespace from those child nodes as well, so we pass the current node to the
removeWhitespace function again:

function removeWhitespace (xml)

{

var loopIndex;

for (loopIndex = 0; loopIndex < xml.childNodes.length;
loopIndex++) {

var currentNode = xml.childNodes [loopIndex] ;

if (currentNode.nodeType == 1) {
removeWhitespace (currentNode) ;
}

Ask the Expert

Q: 15 calling removeWhitespace from inside that function an unusual practice?

A: Calling a function from inside that function is called recursion, and JavaScript supports
recursion. It’s a legal technique, and, as you can see, it’s a powerful one.

In this case, we use recursion to be able to loop over all the nodes in an XML
document, no matter what the structure of that document. Fifteen nested levels of
elements? No problem—removeWhitespace will handle it by operating at each level,
and calling itself to handle the child nodes on the current node.

Now that we’ve eliminated element nodes, we have a candidate indentation whitespace
node of the kind we want to remove. How do we check if it’s removable whitespace? We can
remove any text node that is pure whitespace—that is, only spaces. So how do we check if the
current node is a text node that consists of only spaces?

Text nodes have the nodeType property value set to 3, so we want to check that for
sure. We can also use a regular expression to check if the text node contains all spaces.
Regular expressions let you test the contents of text strings, and JavaScript supports regular
expressions with the string test method. The regular expression we’ll test against is M\s+$,

212 Ajax: A Beginner's Guide

which, translated, says that to match, the text node must contain one or more spaces (that’s the
\s+ part)—and nothing else from start (that’s the character) to finish (that’s the $ character).
Here’s how we test for pure whitespace nodes:

function removeWhitespace (xml)

{

var loopIndex;

for (loopIndex = 0; loopIndex < xml.childNodes.length;
loopIndex++) {

var currentNode = xml.childNodes [loopIndex] ;

if (currentNode.nodeType == 1)
removeWhitespace (currentNode) ;

}

if (((/"\s+$/.test (currentNode.nodevValue))) &&
(currentNode.nodeType == 3)) {

}
}
}

If the if statement’s condition is satisfied, you know you have a text node that’s pure
whitespace, and should be removed. So how the heck do you remove a node from a JavaScript
XML document? You do that with the XML document object’s removeChild method. All you

need to do is pass that method the node object you want to have removed. That means you can
remove a whitespace node like this:

function removeWhitespace (xml)

{

var loopIndex;

Regular Expressions

Are regular expressions leaving you reeling? You won’t need to learn them to work with this
book, or JavaScript, or XML, but they are useful. They have a syntax all their own, and it’s
not particularly easy to master. You can find out all about regular expressions and how to
test strings with them (you can test if text is in the form of phone numbers or social security

numbers, in all uppercase letters, or in any of a thousand other formats) at http://perldoc.
perl.org/perlre.html.

http://perldoc.perl.org/perlre.html
http://perldoc.perl.org/perlre.html

Chapter ¢: Handling XML in Ajox

for (loopIndex = 0; loopIndex < xml.childNodes.length;
loopIndex++) {

var currentNode = xml.childNodes [loopIndex] ;

if (currentNode.nodeType == 1) {
removeWhitespace (currentNode) ;

}

if (((/*\s+$/.test (currentNode.nodeValue))) &&
(currentNode.nodeType == 3)) {
xml .removeChild (xml.childNodes [loopIndex--]) ;
}

}
}

Presto, we’re done. All that remains is to make sure to call removeWhitspace if we’re
operating in Firefox, which we can check through a variable named firefoxFlag. If firefoxFlag
is set to true, we’re operating in Firefox, in which case we call removeWhitespace. Here’s the
final version of party.html that does just this:

<html>
<head>

<title>Retrieving the Third Guest From party.xml</titles>
<script language = "javascript"s

function getData ()
{
var firefoxFlag = false;
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
XMLHttpRequestObject.overrideMimeType ("text/xml") ;
firefoxFlag = true;

} else if (window.ActiveXObject) {
XMLHttpRequestObject = new

ActiveXObject ("Microsoft .XMLHTTP") ;
}

if (XMLHttpRequestObject)
XMLHttpRequestObject.open ("GET", "party.xml", true);

XMLHttpRequestObject.onreadystatechange = function()

{

if (XMLHttpRequestObject.readyState == 4 &&

213

214

Ajax: A Beginner's Guide

}

XMLHttpRequestObject.status == 200)
var xmlDocument = XMLHttpRequestObject.responseXML;
if (firefoxFlag) {

removeWhitespace (xmlDocument) ;

}

displayGuest (xmlDocument) ;
}
}

XMLHttpRequestObject.send (null) ;

}

function displayGuest (xmldoc)

{

}

var partiesNode, partyNode, peopleNode;
var firstNameNode, lastNameNode, displayText;

partiesNode = xmldoc.documentElement;
partyNode = partiesNode.firstChild;
peopleNode = partyNode.lastChild;
personNode = peopleNode.lastChild;
firstNameNode = personNode.firstChild;
lastNameNode = firstNameNode.nextSibling;

displayText = "The third guest was " +
firstNameNode.firstChild.nodeValue + ' '
+ lastNameNode.firstChild.nodeValue;

var target = document.getElementById("targetDiv") ;
target.innerHTML=displayText;

function removeWhitespace (xml)

{

var loopIndex;

for (loopIndex = 0; loopIndex < xml.childNodes.length;
loopIndex++) {

var currentNode = xml.childNodes [loopIndex] ;

if (currentNode.nodeType == 1) {
removeWhitespace (currentNode) ;

}

if (((/"\s+$/.test(currentNode.nodeValue))) &&
(currentNode.nodeType == 3)) {

Chapter ¢: Handling XML in Ajox

xml .removeChild (xml.childNodes [loopIndex--]) ;

}
}
}

</scripts>
</heads>
<body>

<hl>Retrieving the Third Guest From party.xml</hl>

<form>
<input type = "button" value = "Get the third guest"
onclick = "getData()">
</form>

<div id="targetDiv" width =100 height=100>
Who was the third guest?
</divs>

</body>
</html>

The results are displayed in Figure 6-3 in Firefox—now party.html works in Firefox
as well as in Internet Explorer. Cool.

As you can see, navigating from element to element using methods like firstChild and
lastChild works, but it’s awkward, and you have to know the exact structure of the XML
document. One variation from the normal XML structure of your XML document and the
whole application will fail.

©) Retrieving the Third Guest From party.xml - Mozilla Firefox

File Edit Wew Go Bookmarks Tools Help O i

<:Z| - |::> = % @ |D http: fflacalhostichaptera/party Rtrnl V| @ Go “Q, |

’ Getting Started l:;_,.' Latest Headlines

Retrieving the Third Guest From party.xml

‘Get the thircl uest:

The third guest was Ed Norton

Figure 6-3 party.html at work in Firefox

215

216 Ajax: A Beginner's Guide

So is there a better way of locating and extracting your data from an XML document
downloaded with Ajax? There is.

Accessing XML Data Directly

You can actually search XML documents for just the data you’re looking for by using the
XML document object’s getElementsByTagName method, which returns an array of XML
element nodes.

For example, to find the third guest’s first and last names, you only need to search for all
<first_name> and <last_name> elements, and extract the necessary text from the third of each
of these:

<?xml version="1.0"?>
<parties>
<party type="winter">
<party titles>Snow Day</party titles>
<party numbers>63</party number>
<subject>No school today!</subject>
<date>2/2/2009</date>
<peoples>
<person attendance="present"s>
<first name>Ralph</first name>
<last_name>Kramden</last_ name>
<person attendance="absent"s>
</person>
<first_name>A1ice</first_name>
<last_name>Kramden</last_ name>
</person>
<person attendance="present"s>
<first name>Ed</first name>
<last_name>Norton</last name>
</person>
</people>
</party>
</parties>

We can perform this search in a new Ajax application, party2.html, based on our previous
example, party.html. Here, however, we can simply modify the displayGuest function to search
for <first_name> and <last_name> elements:

function displayGuest (xmldoc)

{
firstnamenodes = xmldoc.getElementsByTagName ("first name");
lastnamenodes = xmldoc.getElementsByTagName ("last name");

Chapter ¢: Handling XML in Ajox

After we have an array of <first_name> and <last_name> elements, we can use the third
element in each array (which has array index 2, since array indexes start at 0) to locate the
name we’re looking for. It looks like this (in party2.html):

<html>
<head>

<title>Accessing XML Data Directly</title>
<script language = "javascript"s>

function getData ()

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
XMLHttpRequestObject.overrideMimeType ("text/xml") ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;

}

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", "party.xml", true);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200)
var xmlDocument = XMLHttpRequestObject.responseXML;
displayGuest (xmlDocument) ;

}
}

XMLHttpRequestObject.send (null) ;
}
}

function displayGuest (xmldoc)

{
firstnamenodes = xmldoc.getElementsByTagName ("first name");
lastnamenodes = xmldoc.getElementsByTagName ("last name") ;

var displayText = "The third guest was: " +
firstnamenodes[2] .firstChild.nodeValue + ' '
+ lastnamenodes[2].firstChild.nodeValue;

217

218 Ajax: A Beginner's Guide

var target = document.getElementById("targetDiv");
target.innerHTML=displayText;

}
</scripts>
</heads>
<body>

<hl>Accessing XML Data Directly</hl>

<form>
<input type = "button" value = "Get the third guest"
onclick = "getData()">
</form>

<div id="targetDiv" width =100 height=100>
Who was the third guest?
</divs>

</body>

</html>

You can see the results in Figure 6-4, where party2.html has correctly identified the third
guest. That was easy—no fuss, no muss.

Okay, we’ve been able to extract data from XML elements, but what about XML
attributes? For example, what if you want to read the value of the attendance attribute of the
third guest at the party, to see whether they were present or absent?

‘A Accessing XML Data Directly - Microsoft Internet Explorer,

File Edit View Favorites Tools Help
Qback ~ O - ¥ A (| Poearch TrFavartes 8 | @- & W - L @& @ 3

Address @ http: fflocalhostfchapteréfparty2, html V| Go Links **

Accessing XML Data Directly
Getthe third guest [:

The third guest was: Ed HMorton

Figure 6-4 party2.html at work

Chapter ¢: Handling XML in Ajox

<?xml version="1.0"?>
<parties>
<party type="winter"s
<party title>Snow Day</party titlex>
<party numbers>63</party number>
<subject>No school today!</subjects>
<date>2/2/2009</date>
<people>
<person attendance="present'"s>
<first name>Ralph</first namex>
<last name>Kramden</last namex>
<person attendance="absent">
</person>
<first name>Alice</first name>
<last name>Kramden</last namex>
</person>
<person attendance="present">
<first name>Ed</first namex>
<last_name>Norton</last names>
</person>
</people>
</party>
</parties>

You can get an array of an element’s attributes with an element node’s attributes property,
which looks like this in a new example, attributes.html:

function displayGuest (xmldoc)

var partiesNode, partyNode, peopleNode;
var firstNameNode, lastNameNode, displayText;

partiesNode = xmldoc.documentElement;
partyNode = partiesNode.firstChild;
peopleNode = partyNode.lastChild;
personNode = peopleNode.lastChild;
firstNameNode = personNode.firstChild;
lastNameNode = firstNameNode.nextSibling;
attributes = personNode.attributes

}

Actually, the attributes variable doesn’t hold an array—technically, it’s a named node map.
And that’s helpful, because named node map objects support a method called getNamedItem,
to which you can pass the name of the attribute you want to get. The getNamedItem method
will return an object corresponding to that attribute, and you can recover the value of the
attribute with the object’s nodeValue property.

219

220 Ajax: A Beginner's Guide

In other words, it’s easy to read attributes; here’s how we read the third guest’s attendance
attribute (in attributes.html):

<html>
<head>

<title>Accessing Data in XML Attributes</title>
<script language = "javascript'"s

function getData ()
{
var mozillaFlag = false;
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
XMLHttpRequestObject.overrideMimeType ("text/xml") ;
mozillaFlag = true;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;

}

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", "party.xml", true);

XMLHttpRequestObject.onreadystatechange = function()

if (XMLHttpRequestObject.readyState == 4 &&
XMLHt tpRequestObject.status == 200) {
var xmlDocument = XMLHttpRequestObject.responseXML;
if(mozillaFlag){
removeWhitespace (xmlDocument) ;
}

displayGuest (xmlDocument) ;

}
}

XMLHttpRequestObject.send (null) ;
}
}

function displayGuest (xmldoc)
var partiesNode, partyNode, peopleNode;
var firstNameNode, lastNameNode, displayText;

partiesNode = xmldoc.documentElement;
partyNode = partiesNode.firstChild;
peopleNode = partyNode.lastChild;
personNode = peopleNode.lastChild;

Chapter ¢: Handling XML in Ajox

firstNameNode = personNode.firstChild;

lastNameNode = firstNameNode.nextSibling;

attributes = personNode.attributes

attendancePerson = attributes.getNamedItem("attendance") ;

var displayText = firstNameNode.firstChild.nodeValue
+ ' ' + lastNameNode.firstChild.nodeValue
+ " was " + attendancePerson.nodeValue;

var target = document.getElementById("targetDiv") ;
target.innerHTML=displayText;

}

function removeWhitespace (xml)

{

var loopIndex;

for (loopIndex = 0; loopIndex < xml.childNodes.length;
loopIndex++) {

var currentNode = xml.childNodes [loopIndex] ;

if (currentNode.nodeType == 1) {
removeWhitespace (currentNode) ;

}

if (((/"\s+$/.test (currentNode.nodeValue))) &&
(currentNode.nodeType == 3)) {
xml.removeChild (xml.childNodes [loopIndex--1) ;
1

}
}

</scripts>
</head>
<body>

<hl>Accessing Data in XML Attributes</hls>

<forms>
<input type = "button" value = "Get the third guest's attendance"
onclick = "getData()">
</form>

<div id="targetDiv" width =100 height=100>
Was the third guest present?
</div>

</body>

</html>

221

222 Ajax: A Beginner's Guide

‘A Accessing Data in XML Attributes - Microsoft Internet Explorer

File Edit View Favorites Tools Help
Qiack ~ O - ¥ A | Poearch rFavartes 8 | R- & W - L @& @ 3

Address @ http: fflocalhost fchapters/attributes, html V| Go Links **

Accessing Data in XML Attributes

[Getthe third guest's attendance k‘]

Ed MNorton was present

Figure 6-5 Reading XML attribute values

You can see attributes.html at work in Figure 6-5, where it’s reporting that the third guest,
Ed Norton, was present. Excellent.

Validating Your XML

The final XML topic for this chapter is how to validate your XML. As discussed earlier in this
chapter, you can specify the syntax of your XML documents and test to see whether or not it
adheres to your rules. There are two methods of specifying an XML document’s syntax: with
XML Schema, and with a DTD. Unfortunately, support for schema is shaky to nonexistent
in browsers—even Internet Explorer’s support for schema is very shaky. So in this example,
we’ll stick with the older form of specifying XML syntax, DTDs.

We saw what the DTD for party.xml looked like earlier in this chapter, and we’ll call the
document that includes the DTD for party.xml, partydtd.xml:

<?xml version="1.0"?>
<!DOCTYPE parties [
<!ELEMENT parties (party*)s>
<!ELEMENT party (party title, party number, subject, date, people¥*)>
<!ELEMENT party title (#PCDATA)>
<!ELEMENT party number (#PCDATA) >
< !ELEMENT subject (#PCDATA) >
< !ELEMENT date (#PCDATA) >
<!ELEMENT first name (#PCDATA) >
<!ELEMENT last name (#PCDATA) >
< !ELEMENT people (person*) >
<!ELEMENT person (first name,last name) >
<!ATTLIST party
type CDATA #IMPLIED>
<!ATTLIST person
attendance CDATA #IMPLIED>
1>

Chapter ¢: Handling XML in Ajox

<parties>
<party type="winter"s
<party titles>Snow Day</party titles>
<party number>63</party number>
<subject>No school today!</subject>
<data>2/2/2009</data>
<people>
<person attendance="present'"s>
<first name>Ralph</first name>
<last name>Kramden</last namex>
</person>
<person attendance="absent">
<first name>Alice</first name>
<last name>Kramden</last namex>
</person>
<person attendance="present'"s>
<first name>Ed</first namex>
<last_name>Norton</last name>
</person>
</people>
</party>
</parties>

Note that there’s an error here—this document uses a <data> element, not a <date>
element, and you can catch that error in browsers like Internet Explorer. To check the
document’s validity, you can create an XML parser object of the MSXML2.DOMDocument
type in Internet Explorer, which we do in our getData function:

function getData ()

{

var XMLHttpRequestObject = false;

XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;

if (XMLHttpRequestObject)
XMLHttpRequestObject.open ("GET", "partydtd.xml?b=5", true);

XMLHttpRequestObject .onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200)
var xmlDocument = XMLHttpRequestObject.responseXML;

var parser = new ActiveXObject ("MSXML2.DOMDocument") ;
parser.validateOnParse = true;

223

224 Ajax: A Beginner's Guide

Note that you also must set the parser object’s validateOnParse property to true to make
it actually parse XML. Now you can pass the XML you’ve downloaded to the parser using its

load method like this:

function getData()

{

var XMLHttpRequestObject = false;

XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", "partydtd.xml?b=5", true);

XMLHttpRequestObject.onreadystatechange = function()

{

if (XMLHttpRequestObject.readyState == 4 &&
XMLHt tpRequestObject.status == 200) {
var xmlDocument = XMLHttpRequestObject.responseXML;

var parser = new ActiveXObject ("MSXML2.DOMDocument") ;
parser.validateOnParse = true;
parser.load (XMLHttpRequestObject.responseXML) ;

}

If the parser found an error, the parser.parseError.errorCode property will be non-zero, and
you can report the error like this in a new example (validation.html):

<html>
<head>

<title>Validating an XML Document</titles>
<script language = "javascript'"s

function getData ()

{

var XMLHttpRequestObject = false;

XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", "partydtd.xml?b=5", true);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHt tpRequestObject.status == 200) {
var xmlDocument = XMLHttpRequestObject.responseXML;

Chapter 6: Handling XML in Ajax 225

var parser = new ActiveXObject ("MSXML2.DOMDocument") ;
parser.validateOnParse = true;

parser.load (XMLHttpRequestObject.responseXML) ;

var target = document.getElementById("targetDiv") ;

if (parser.parseError.errorCode != 0) {
target.innerText = "Error in " +
parser.parseError.url +
" line " + parser.parseError.line +
" position " + parser.parseError.linepos +

".\nError source: " + parser.parseError.srcText +
"\n" + parser.parseError.reason +
"\n" + U"Error: " +

parser.parseError.errorCode;

}

else {

displayGuest (xmlDocument) ;

}
}

XMLHttpRequestObject.send (null) ;
}
1

function displayGuest (xmldoc)
{
var partiesNode, partyNode, peopleNode;
var firstNameNode, lastNameNode, displayText;

partiesNode = xmldoc.documentElement;
partyNode = partiesNode.firstChild;
peopleNode = partyNode.lastChild;
personNode = peopleNode.lastChild;
firstNameNode = personNode.firstChild;
lastNameNode = firstNameNode.nextSibling;

displayText = "The third guest was " +
firstNameNode.firstChild.nodevValue + ' '

+ lastNameNode.firstChild.nodeValue;

var target = document.getElementById("targetDiv") ;
target.innerHTML=displayText;

}

</scripts>
</head>

<body>

226 Ajax: A Beginner's Guide

<hls>Validating an XML Document</hl>

<form>
<input type = "button" value = "Get the third guest"
onclick = "getData() ">
</form>

<div id="targetDiv" width =100 height=100>
Your data will appear here.
</div>

</body>
</html>

You can see that partydtd.xml fails the validation process because the parser found a
<data> element when it was expecting a <date> element, as shown in Figure 6-6.
You now have a good foundation in working with XML in Ajax.

A Validating an XML Document - Microsoft Internet Explorer

File Edit View Favorites Tools Help '1.
Qback -~ O - ¥ A (| Poearch rFavartes 8 | R- & W - @& @ 3
Address @ http: fflocalhost fchapterdvalidation. html V| Go Links **

Validating an XML Document

Getthe third guest

Errormn line 23 posttion 9.

Error source: <data=2/2/2009</data>

Element content 1z invalid according to the DTDSchema.
Expecting: date.

Error: -1072838028

@ Daone 'd Local intranet:

Figure 6-6 Validating an XML document

Chapter 7

Working with Cascading
Style Sheets with Ajax

227

228

Ajax: A Beginner's Guide

Key Skills & Concepts

Getting text noticed with CSS
Styling fonts with CSS

Styling colors with CSS

Setting absolute positions using CSS

Creating a full Ajax-enabled CSS-driven menu system

As you’ve already seen in the previous chapters, the primary reason to use Ajax is that it
enables web pages to be updated without requiring a page refresh, which makes the page
update rather seamless to the viewer. An important consideration when using this technique
is how you present the data downloaded from the server. So far, you’ve been presenting the
downloaded data simply by overwriting a <div> element. As this chapter explains, you have

many more options available in how you present that new data, enabling you to draw the
reader’s attention to the changes.

Because the way you present your downloaded data is such a big part of Ajax applications,
that’s the subject of this chapter. For example, a frequent question among professional Ajax
developers is, will the user notice the download when it appears in the page? In pages that
present tables of data, where you’re updating only one or two items, that can be an issue. As
you’ll see, one way of handling this issue is to display downloaded text with a flash of color.

You’ll also see that you don’t have to display downloaded text in simple <div> elements.
You can display such data anywhere in a page, as you’re going to see while creating a pop-up
menu system with text that’s downloaded interactively with Ajax, allowing the menu items to
be updated in real time.

In this chapter, updating the page with Ajax-downloaded data is going to take place using
Cascading Style Sheets, CSS. Familiarity with CSS is essential for the Ajax developer, and
you’re going to get a good introduction to the topic in this chapter. CSS is one of the most
important Ajax topics because updating web pages is so important in Ajax.

CSS is a formal specification for arranging and styling items in web pages. You can set
data’s font, color, appearance, visibility, and placement using CSS. You’re going to get a good
CSS foundation in this chapter, but for full, complete details on CSS, see the CSS specification
at www.w3.0org/TR/CSS21/.

Drawing the User’s Attention to Downloaded Text

One of the main issues of Ajax applications is also its main advantage—there’s no page refresh
when you download data. That’s great, but it can also mean the user misses data updates,
especially in pages with lots of content.

www.w3.org/TR/CSS21/

Chapter 7: Working with Cascading Style Sheets with Ajax 229

There are various ways to address this issue, but the easiest solution is simply to make
newly displayed data stand out in some way. For example, you can enlarge that text, or color
it momentarily, when it’s newly displayed. This section presents an example, attentionGetter
.html, which displays text in red for half a second after it is downloaded. After that time, the
newly downloaded text goes back to black. Making newly downloaded data flash in this way is
a great way to get that data noticed in Ajax applications.

We can create this example with a combination of CSS and JavaScript. We start
attentionGetter.html with a button that, when clicked, calls a function named getData, asking

that function to download a file named message.txt and display its contents in a <div> element
with the ID targetDiv:

<body>

<H1>Getting the user's attention</H1>

<form>
<input type = "button" value = "Get the text"
onclick = "getData('message.txt', 'targetDiv')">
</form>

<div id="targetDiv">
<p>The fetched data will go here.</p>
</div>

</body>

In the getData function, we create an XMLHttpRequest object:

<script language = "javascript"s>
function getData (dataSource, divID)

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest() ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft.XMLHTTP") ;

230 Ajax: A Beginner's Guide

If we were successful in creating an XMLHttpRequest object, we open it, configuring it to

use the GET method:
<script language = "javascript'"s
function getData (dataSource, divID)
{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {

XMLHttpRequestObject = new

ActiveXObject ("Microsoft .XMLHTTP") ;

}

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET",

dataSource) ;

}
}

And we set up an anonymous JavaScript function to handle the download, like this:

<script language = "javascript'"s>
function getData (dataSource, divID)

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;

} else if (window.ActiveXObject) ({
XMLHttpRequestObject = new

ActiveXObject ("Microsoft .XMLHTTP") ;

}

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", dataSource) ;

XMLHttpRequestObject.onreadystatechange

{

= function()

if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {

Chapter 7: Working with Cascading Style Sheets with Ajax 231

When the text is downloaded, we want to display it in red initially. You can style the <div>
element to display its text in red by using the color property of the <div> element’s built-in
style object. The style object gives you access to a visible element’s CSS styles via JavaScript.

You style items in CSS by setting CSS properties. The following are the color-related
properties:

color Sets the foreground color. You set it to an HTML color (like #FFFFFF).

background-color Sets the background color. Again, you set it to an HTML color.

You set colors using HTML color values—just as in web pages—Ilike this: rrggbb, where rr
is the hexadecimal value (00 up to FF) of the red component, gg is the green component, and
bb is the blue component. (This is essential HTML to know. If you’re not familiar with setting
colors in HTML, do an online search for “HTML color values.”)

So, for example, to set the text color of a <div> element with the ID targetDiv to red

(which, in HTML terms, is "#FF0000"), you could do this in our example, attentionGetter
.html, as follows:

<script language = "javascript"s>
function getData (dataSource, diviID)

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;
}

if (XMLHttpRequestObject) {
var obj = document.getElementById("targetDiv") ;
XMLHttpRequestObject.open ("GET", dataSource) ;

XMLHttpRequestObject .onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200)
obj.style.color = "#FF0000";

232

Ajax: A Beginner's Guide

That’s the way you can access CSS style properties of visible elements in web pages—as,
for example, obj.style.color. What if the CSS style property name has a hyphen in it, such as
background-color? Hyphens aren’t allowed in JavaScript variable names, so the convention
is that you capitalize the letter following the hyphen, and then remove the hyphen. So, for
example, if you wanted to set the <div> element’s background color to red, how would you do
it? You’d do it like this: obj.style.backgroundColor = "#FF0000".

Great, that allows you to set the foreground and background colors of HTML elements
using CSS from JavaScript. Here’s how we complete the getData function, displaying the
downloaded text in red:

<script language = "javascript"s>
function getData (dataSource, diviID)
{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;
}

if (XMLHttpRequestObject) {
var obj = document.getElementById("targetDiv") ;
XMLHttpRequestObject.open ("GET", dataSource) ;

XMLHttpRequestObject.onreadystatechange = function()

{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200)
obj.style.color = "#FF0000";
obj.innerHTML = XMLHttpRequestObject.responseText;
}

}

XMLHttpRequestObject.send (null) ;
}
}

That displays the downloaded text in red, but we only want the downloaded text to flash
red for a half second and then go back to black. So how the heck do we do that?

This is where JavaScript comes in. We can use the JavaScript setTimeout function to pass
to JavaScript the name of another function and the amount of time (in milliseconds—that is,
thousandths of a second) that we want to elapse before JavaScript calls that other function.
So we can set up JavaScript to call another function named, say, attentionGetter, that would
change the color of the text back to black after a half second (that is, 500 ms) like this:

Chapter 7: Working with Cascading Style Sheets with Ajax

<script language = "javascript"s>
function getData (dataSource, diviID)

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;

}

if (XMLHttpRequestObject) {

var obj = document.getElementById("targetDiv") ;
XMLHttpRequestObject.open ("GET", dataSource) ;

XMLHttpRequestObject.onreadystatechange = function()

{

if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200)
obj.style.color = "#FF0000";

obj.innerHTML = XMLHttpRequestObject.responseText;
setTimeout (attentionGetter, 500) ;

}
}

XMLHttpRequestObject.send (null) ;

}
}

</script>

And in the attentionGetter function, we just set the color of the text back to black (HTML
color value "#000000"):

<script language = "javascript"s>
function getData (dataSource, divID)
{
}
function attentionGetter ()
var target = document.getElementById("targetDiv");
target.style.color = "#000000";

</script>

233

234 Ajax: A Beginner's Guide

And that’s it—the downloaded text originally appears in red, and then changes back to
black after half a second. Here’s the whole of attentionGetter.html:

<html>
<head>

<title>Getting the user's attention</title>

<script language = "javascript"s>
function getData (dataSource, divID)
{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {

XMLHttpRequestObject = new

ActiveXObject ("Microsoft .XMLHTTP") ;

}

if (XMLHttpRequestObject) {

var obj = document.getElementById("targetDiv") ;

XMLHttpRequestObject.open ("GET", dataSource) ;

XMLHttpRequestObject .onreadystatechange

{

= function()

if (XMLHttpRequestObject.readyState == 4 &&

XMLHttpRequestObject.status == 200)
obj.style.color = "#FF0000";
obj.innerHTML =

XMLHttpRequestObject .responseText;
setTimeout (attentionGetter, 500) ;

}
}
XMLHttpRequestObject.send (null) ;
}
}
function attentionGetter ()
{
var target = document.getElementById("targetDiv") ;
target.style.color = "#000000";
}
</script>
</head>

<body>

Chapter 7: Working with Cascading Style Sheets with Ajax 235

A Getting the user’s attention - Microsoft Internet Explorer,

File Edit View Favorites Tools Help
Qbak ~ O - ¥ A (0| Poearch rFavortes 8 | @- & W - L @ @ 3

Address @ http:/flocalhostichapter7/attentionGetter . html v| e

Links **

Getting the user's attention

Thus test will be red for half a second, then change to black. Pretty cool, hub?

Figure 7-1 attentionGetter.html at work

<H1>Getting the user's attention</H1>

<form>
<input type = "button" value = "Get the text"
onclick = "getData('message.txt', 'targetDiv')">
</form>

<div id="targetDiv">
<p>The fetched data will go here.</p>
</div>

</body>
</html>

You can see this example at work in Figure 7-1, although the text appears in glorious black
and white here because this book is not in color; to see the message displayed in red, you can

download and try this example for yourself.
Cool. That’s one way to make sure the user’s attention is drawn to newly downloaded text.

And there are other ways to style text using CSS, as you’re about to see.

Styling Text Using CSS
Besides making newly downloaded text flash in color in a web page, you have your choice of

other CSS effects to draw the user’s attention to that text. For example, you could enlarge it
temporarily, display it in bold, underline it, or use some other text style.

236 Ajax: A Beginner's Guide

Property Description

font-family Specifies the actual font, like Arial or Helvetica. If you want to list alternative fonts
in case the farget computer is missing your first choice, specify them as a comma-
separated list, such as {font-family: Arial, Helveticay}.

font-style Specifies how the text is to be rendered. Set to normal, italic, or oblique.

font-weight Refers to the boldness or lightness of the glyphs used to render the text, relative to
other fonts in the same font family. Set to normal, bold, bolder, lighter, 100, 200,
300, 400, 500, 600, 700, 800, or 200.

line-height Indicates the height given to each line.

font-size Refers to the size of the font.

text-decoration Underlines text. Set fo none, underline, overline, |ine-through, or blink.

text-align Centers text. Set fo left, right, or center.

Table 7-1 CSS Style Properties

CSS has many different text styles that you can use to make newly downloaded text stand
out. Table 7-1 lists and describes the most popular style properties.

Here’s an example, textStyles.html, that puts these text properties to work. This example
sets the styles for the <body> element of a web page (you’ve already seen how to set the
styles for an individual element by ID, such as a <div> element, in JavaScript). In addition to
JavaScript, you can set styles in a <style> element, which usually goes in the <head> element
of a web page:

<html>

<head>

<titles>
Styling text with CSS

</title>
<style type="text/css">
</style>

</head>

</html>

Chapter 7: Working with Cascading Style Sheets with Ajax 237

You set styles here for web page elements by using style rules, collections of style property
and style value pairs separated by semicolons. For example, here’s how you could set up a
style rule for this <body> element, setting various style properties:

<html>
<head>
<titles
Styling text with CSS
</title>
<style type="text/css">
body {font-style: italic; font-weight: bold;
font-size: 16pt; line-height: 12pt; font-family: arial,
helvetica; text-align: center}
</style>
</head>
</html>

This sets the font-style property of the <body> element to italic, the font-weight style
property to bold, and so on. Now we can add some text to the <body> element:

<html>
<head>
<title>
Styling text with CSS
</title>
<style type="text/css">
body {font-style: italic; font-weight:
bold; font-size: 1lépt; line-height: 12pt; font-family:
arial, helvetica; text-align: center}
</style>
</head>
<body>

<hl>Styling text with CSS</hl>

This page displays text styled with CSS.
</body>

</html>

238 Ajax: A Beginner's Guide

& | Styling text with CSS - Microsoft Internet Explorer

File Edit View Favorites Tools Help

Qiack ~ O - ¥ A 0| Poearch rFavartes 8 | D- & W - L @& @ 3

Address @ http: fflocalhost fchapter 7 ftext Styles, html V| Go Links **

Styling text with CSS

This page displays text styled with CSS.

Figure 7-2 Styling a <body> element

You can see the results in Figure 7-2.

Now let’s add a button that, when clicked, will underline the text. To underline text, you
use the text-decoration style property, setting it to "underline". In JavaScript, that property
becomes the textDecoration property, so we can have the button do its work like this (in
textStyles.html):

<html>
<head>
<titles>
Styling text with CSS
</title>
<style type="text/css">
body {font-style: italic; font-weight: bold; font-size:
16pt; line-height: 12pt; font-family: arial, helvetica;
text-align: center}
</style>
</head>

<body>

<hl>Styling text with CSS</hl>

This page displays text styled with CSS.

<form>
<input type = "button" value = "Underline the text"
onclick = "body.style.textDecoration = 'underline'">
</form>
</body>

</html>

Chapter 7: Working with Cascading Style Sheets with Ajox 239

& | Styling text with CSS - Microsoft Internet Explorer

File Edit View Favorites Tools Help F

Qcback - © - ¥ A 0| Poearch rFavartes 8 | D- &] - L @& @ 3

Address @ http: fflocalhost fchapter 7 ftext Styles, html V| Go Links **

Styling text with CSS

This page displays text styled with CSS.

Underline the text k

Figure 7-3 Underlining text in a <body> element

You can see this new button at work in Figure 7-3.
Here are the CSS style properties and their values in this example:

font-style: italic
font-weight: bold
font-size: 16pt

line-height: 12pt
text-decoration: underline
font-family: arial, helvetica

text-align: center

What if you had several HTML elements of the same type (such as <div> or <p> elements)
and wanted to style them all differently? In that case, you could give them different ID values,
and create a style rule for each one using the ID value preceded by a sharp sign (#). For
example, if you had a <div> element with the ID targetDiv, here’s how you could style it to use
36-point font in the textStyles.html <style> element:

<html>
<head>
<title>
Styling text with CSS
</title>

<style type="text/css">
body {font-style: italic; font-weight: bold; font-size: 16pt;
line-height: 12pt; font-family: arial, helvetica; text-align: center}
#targetDiv {font-size: 36pt}

240 Ajax: A Beginner's Guide

& | Styling text with CSS - Microsoft Internet Explorer

File Edit View Favorites Tools Help

Qiack - O - ¥ A 0| Poearch TrFavartes 8 | R- & W - L @& @ 3
Address @ http: fflocalhost fchapter 7 ftext Styles, html V| Go Links **

Styling text with CSS

This page displays text styled with CSS.
Underline the text

Here is more text

Figure 7-4 Styling a <div> element

</style>
</head>

<body>

<hl>Styling text with CSS</hl>

This page displays text styled with CSS.

<form>
<input type = "button" value = "Underline the text"
onclick = "body.style.textDecoration = 'underline'"s>
</form>

<div id="targetDiv">Here is more text</div>
</body>
</html>

You can see this new version of the page at work in Figure 7-4.

Change the Size of Text

Try changing the size of the text in the textStyles.html page to 48-point font when the user
clicks the button. Here’s how to do that:

<html>
<head>
<title>
Styling text with CSS

Chapter 7: Working with Cascading Style Sheets with Ajax

</title>

<style type="text/css">
body {font-style: italic; font-weight: bold; font-size:
16pt; line-height: 12pt; font-family: arial, helvetica;
text-align: center}
#targetDiv {font-size: 36pt}

</style>

</head>

<body>

<hl>Styling text with CSS</hl>

This page displays text styled with CSS.

<form>
<input type = "button" wvalue = "Change the text size"
onclick = "body.style.fontSize = '48pt'">
</form>

<div id="targetDiv">Here is more text</div>
</body>
</html>

Besides styling text, you can also style colors and backgrounds in Ajax-enabled pages.

Styling Colors and Backgrounds Using CSS

There are a number of CSS properties to set colors and backgrounds. Table 7-2 lists and
describes the most popular color and background properties.

Property Description

color Sets the foreground color. Set to an HTML color (like #FFFFFF).

background-color Sets the background color. Set to an HTML color.

background-image Sets the background image. Set to an URL.

background-repeat Specifies whether the background image should be tiled. Set to repeat,
repeat-x, repeat-y, or no-repeat.

chkground-ah‘qchmenr Specifies whether the chkground scrolls with the rest of the document.
Set to scroll or fixed.

background-position Sets ﬂ;}e initial position of the background. Set to top, center, bottom, left,
or right.

Table 7-2 CSS Color and Background Properties

241

242 Ajax: A Beginner's Guide

Here’s an example, letter.html, that styles a business letter’s colors and background colors:

<html>
<head>
<titles
Styling Foregrounds and Backgrounds
</title>
</heads>

<body style="background-color: #EEDDDD">

<div align="left">
Chief Web Designer

Pretty Pleasing Web Designs, Inc.

Los Angeles
</div>

<p>
Dear you:

<div align="center"
style="color: #FF0000; background-color: #55FF55;
font-weight: bold; font-size: lépt">

What do you think of this style?

</div>

<div align="right">

<p>
Chief Stylist

Dynamo CSS Stylers, Inc.

London
</div>

</body>
</html>

Chapter 7: Working with Cascading Style Sheets with Ajox 243

You can also add a button that, when clicked, can change the background of the <div> in
the middle of the letter. You’ve seen that you can refer to elements such as the <body> element
like body.style.backgroundColor—but how do you refer to a specific <div> element? You can
use the getElementByld method to get an object corresponding to that <div> element, as we
did in the beginning of this chapter, but there’s another way as well.

You can give the <div> element an ID value, and refer to that element in JavaScript simply
using that ID value—no need to call the getElementByld method. For example, if you give
the <div> element the ID div1, you could refer to its background color like this: div1.style
.backgroundColor.

Here’s how we change the <div> element’s background color to white when the user clicks
a button:

<html>
<head>
<title>
Styling Foregrounds and Backgrounds
</title>
</head>

<body style="background-color: #EEDDDD">

<div align="left">
Chief Web Designer

Pretty Pleasing Web Designs, Inc.

Los Angeles
</div>

<p>

Dear you:

<div align="center" id="divl"
style="color: #FF0000; background-color: #55FF55;
font-weight: bold; font-size: 1lépt">

What do you think of this style?

</div>

<div align="right">

<p>
Chief Stylist

244 Ajox: A Beginner's Guide

Dynamo CSS Stylers, Inc.

London
</div>
<center>
<form>
<input type = "button" value = "Change background color"
onclick = "divl.style.backgroundColor = '#FFFFFF'">
</form>
</center>

</body>
</html>

That’s useful in Ajax applications when just making the text flash isn’t enough—you want
to make the change you’ve made in the web page really stand out by making the background
of the element change color (particularly useful when you’re dealing with cells in an HTML
table).

You can see this example at work in Figure 7-5, where clicking the button has changed the
color of the central <div> element to white. Nice.

2 Styling Foregrounds and Backgrounds - Microsoft Internet Explorer, |:||§|r>__<|
File Edit View Favorites Tools Help 't"

Qiack ~ O - ¥ A (| Poearch TrFavartes 8 | @- & W - L @ @ 3
Address @ http: fflocalhost fchapter7fletter, html V| Go Links **

Chief Web Designer
Pretty Pleasing Web Designs, Inc.
Los Angeles

Dear you

What do you think of this style?

Chief Stylist
Drynamo C33 Stylers, Inc.
London

[Change background color k]

@ Daone ‘ﬂ Local intranet:

Figure 7-5 Setting a <div> element's background

Chapter 7: Working with Cascading Style Sheets with Ajax 245

ALY Use Preassigned Colors

Besides letting you use color values to set colors (like '#FFCCEE'), modern browsers also
support dozens of predefined color names like “green,” “red,” “ivory,” “sand,” “viridian,” and
more.

Try changing the background of the central <div> element in letter.html to coral instead of
white. Here’s the code:

<center>
<form>
<input type = "button" wvalue = "Change background color"
onclick = "divl.style.backgroundColor = 'coral'">
</form>
</center>

Setting Element Location in Web Pages
A major use in Ajax for CSS is setting absolute positions of the elements in a web page, such
as when you create pop-up menus, dialog boxes, drop-down auto-complete list boxes, and so
on. Table 7-3 lists and describes the CSS properties you use when setting absolute positions.

NOTE

By default, the top, bottom, left, and right measurements are taken to be in pixels.
You can append px to the end of these values to make sure the browser interprets the
measurement as pixels, as in 50px.

Property Description

position Set to absolute for absolute positioning.

top Offset of the top of the element on the screen.

bottom Offset of the bottom of the element in the browser’s client area.
left Offset of the left edge of the element in the browser’s client area.
right Offset of the right edge of the element in the browser’s client area.
z-order Sets the stacking order of the item with respect to other elements.

Table 7-3 CSS Absolute Position Properties

246

Ajax: A Beginner's Guide

Here’s an example, location.html, that positions images in a web page. Each image will be
stored in a <div> element, and we’ll set the position of the <div> element. We’ll start off by
positioning image 1 (image01.jpg) with an HTML style attribute:

<html>
<head>
<title>
Using Absolute Positioning
</title>
</head>
<body>
<hl align="center">
Using Absolute Positioning
</hl>
<div style="position:absolute; left:40; top:60;" id="imageOl">

Image 1
</div>
</body>
</html>

Note that we’re displaying both the image and a caption (“Image 17) in the <div> element,
to which we’ve given the ID "image01". Note also that in order to position the image, we set
the position style property to “absolute,” and then set the location of the top-left point of the
image with the top and left style properties—by default, these positions are measured in pixels.

And we can add the other two images as well:

<html>

<head>
<title>
Using Absolute Positioning
</title>
</head>

<body>
<hl align="center"s>

Using Absolute Positioning
</hl>

Chapter 7: Working with Cascading Style Sheets with Ajax

<div style="position:absolute; left:40; top:60;" id="imageOl">

Image 1

</div>

<div style="position:absolute; left:195; top:90;" id="image02">

Image 2

</div>

<div style="position:absolute; left:350; top:120;" id="image03">

Image 3

</div>

</body>
</html>

And, just for fun, let’s add a button that lets the user move one of the <div> elements
containing an image—say image(1—this way:

<html>

<head>
<title>
Using Absolute Positioning
</title>
</head>

<body>

<hl align="center">
Using Absolute Positioning
</hl>

<div style="position:absolute; left:40; top:60;" id="imageOl">

Image 1

</div>

<div style="position:absolute; left:195; top:90;" id="image02">

Image 2

</div>

247

248 Ajax: A Beginner's Guide

<div style="position:absolute; left:350; top:120;" id="image03">

Image 3
</div>

<center>
<form>
<input type = "button" value = "Change location"
style="position:absolute; left:220; top:260;"
onclick = "image02.style.top = '150'">
</form>
</center>

</body>

</html>

Note that we access the top position of the second div using its ID: image02.style.top. And
note also that we position the button in the same way as we position the images, with absolute

positioning.

You can see the results in Figure 7-6, where, as you can see, the images have positioned

properly.

When you click the button, the second image moves, as you’d expect and as shown in

Figure 7-7.

‘A Using Absolute Positioning - Microsoft Internet Explorer

File Edit View Favorites Tools Help
Qback - O - ¥ A 0| Poearch rFavartes 8 | D- & W - @& @ 3
Address @ http: fflocalhost fchapter 7 flocation. html V| Go

Links **

Using Absolute Positioning

imege 1 — |

g age 2 Image 3

Tmage 2

Tmage 3

Change location

@ Done

H Local intranet:

Figure 7-6 Positioning images

Chapter 7: Working with Cascading Style Sheets with Ajox 249

‘A Using Absolute Positioning - Microsoft Internet Explorer

File Edit View Favorites Tools Help

Qbak - O - ¥ A (| Poearch rFavartes 8 | D- & W - L @& @ 3
Address @ http: fflocalhost fchapter 7 flocation. html

v| Go Links **

Using Absolute Positioning

Image 1

v Image 3
Image 2 b

Imag -Changelocaﬁon k

@ Done

'ﬂ Local intranet:

Figure 7-7 Positioning an image dynamically

Absolute positioning is exceptionally useful in Ajax applications, because you can place
your new data anywhere you want in a page; no refresh needed.

Adding an Additional Button

Try adding an additional button that moves the third image. Here’s one way of doing that
<html>

<head>
<title>

Using Absolute Positioning
</title>

</head>

<body>

<hl align="center">

Using Absolute Positioning
</hl>

<div style="position:absolute; left:40; top:60;" id="imageOl">

Image 1

(continued)

250 Ajax: A Beginner's Guide

</div>

<div style="position:absolute; left:195; top:90;" id="image02">

Image 2

</div>

<div style="position:absolute; left:350; top:120;" id="image03">

Image 3
</div>
<center>
<form>
<input type = "button" value = "Change location of image 2"
style="position:absolute; left:220; top:260;"
onclick = "image02.style.top = '150'">
<input type = "button" value = "Change location of image 3"
style="position:absolute; left:220; top:290;"
onclick = "image03.style.left = '400'">
</form>
</center>
</body>

</html>

Setting the Stacking Order of Web Page Elements

You can also use the stacking order of web page elements to position them with respect to one
another, and that’s especially important when you’re doing drag-and-drop in Ajax applications,
to make sure the element being dragged slides over other elements in the page. An element
with a high stacking order—as set by the style property z-index—will appear on top of
elements lower in the stacking order.

Here’s a quick example, stacker.html, that displays the three stacked images from the
previous example:

<html>

<head>
<title>
Using Stacking Order
</title>
</head>

<body>

Chapter 7: Working with Cascading Style Sheets with Ajax

<hl align="center">
Using Stacking Order
</hl>

<div style="position:absolute; left:40; top:60;" id="imageOl">

Image 1

</div>

<div style="position:absolute; left:195; top:90;" id="image02">

Image 2

</div>

<div style="position:absolute; left:350; top:120;" id="image03">

Image 3

</div>

</body>
</html>

Now let’s add a button that reverses the stacking order by assigning a z-index of 300 to
image01, 200 to image02, and 100 to image03:

<html>

<head>
<title>
Using Stacking Order
</title>
</head>

<body>

<hl align="center">
Using Stacking Order
</hl>

<div style="position:absolute; left:40; top:60;" id="imageOl">

Image 1

</div>

251

252 Ajax: A Beginner's Guide

<div style="position:absolute; left:195; top:90;" id="image02">

Image 2
</div>

<div style="position:absolute; left:350; top:120;" id="image03">

Image 3
</div>

<center>
<form>
<input type = "button" value = "Flip stacking order"
style="position:absolute; left:200; top:260;"
onclick = "imageOl.style.zIndex = '300';
image02.style.zIndex = '200'; imageO3.style.zIndex =

1100' ">
</form>
</centers>
</body>
</html>

You can see the original stacking order in Figure 7-8.

& | Using Stacking Order - Microsoft Internet Explorer.

File Edit View Favorites Tools Help 't"
Qiack ~ & - ¥ A | Poearch rFavartes 8 | R- & W - L @& @ 3
Address @ http: fflocalhost fchapter7fstacker html V| Go Links **

Using Stacking Order

~1] |

g age 2 Image 3

Tmage 2

Tmage 3

L Flip stacking arder]

@ Daone ‘d Local intranet:

Figure 7-8 Stacked images

Chapter 7: Working with Cascading Style Sheets with Ajax 253

@ Using Stacking Order - Microsoft Internet Explorer, |:||§|r>__<|
File Edit View Favorites Tools Help '1.
Qback ~ O - ¥ A | Poearch rFavartes 8 | D- & W - @ @ 3

Address @ http: fflocalhost fchapter7fstacker html V| Go Links **

Using Stacking Order

Image 1
— | Image 2 wa

Tmage 2 |

Tmage 3

Flip stacking arder [

@ Daone 'ﬂ Local intranet:

Figure 7-9 Setting stacking order

When you click the button, the stacking order reverses, as you can see in Figure 7-9.
Not bad.

A Complete Ajax CSS Example: menus.html

As the final CSS-intensive example in this chapter, we’ll take a look at an Ajax-enabled CSS-
driven menu system. This real-world example, menus.html, downloads menu items from a
server and displays its menus using CSS. Because the menu items are downloaded in real
time, you can update and change the menu items that the application displays. For example, if
your menus are for a restaurant that serves ice cream and sandwiches, and the restaurant runs
out of licorice ice cream, you can remove that item from the menu before the menu items are
downloaded.

You can see menus.html at work in Figure 7-10, where the user is selecting chocolate ice
cream from a pop-up menu whose items were just downloaded behind the scenes using Ajax.

When the user makes their selection, the application reports on that selection, as you see in
Figure 7-11.

This is a full-scale Ajax application, and it’s a long one, so don’t feel that you have to
catch all the details. The idea is to show an example of how you can use CSS to display Ajax-
downloaded data in a unique way—in drop-down menus that respond to mouse clicks. You’ll
pick up some CSS and JavaScript skills in the process.

254 Ajax: A Beginner's Guide

& | Creating an Ajax-enabled Menu System - Microsoft Internet Explorer

File Edit View Favorites Tools Help

Qeiack ~ O - ¥ A | Poearch rFavartes 8 | @- & W - L @& @ 3

Address @ http: fflocalhost fchapter 7 fmenus, html V| Go

Links **

Creating an Ajax-enabled Menu System

Ice Cream Sandwiches

Strawberry
Vanilla

Chocola@

Figure 7-10 Selecting an item in @ menu

Responding to the mouse makes up a significant amount of this example. When the user
moves the mouse over an image (“Ice Cream” or “Sandwiches”), the corresponding menu
needs to pop open. If the user moves the mouse away from the menu, the menu needs to
close. If the user clicks an item in the menu to make a selection, the application must respond
accordingly. On top of all that, the application has to respond to the mouse in both Internet
Explorer and Firefox-type browsers, which handle the mouse in completely different ways.

& | Creating an Ajax-enabled Menu System - Microsoft Internet Explorer

File Edit View Favorites Tools Help

Qiack -~ © - ¥ A (o | Poearch TrFavortes 8 | R- & W] - [@ @ 3
Address @ http: fflocalhost fchapter 7 fmenus, html V| Go

Links **

Creating an Ajax-enabled Menu System
Ice Cream Sandwiches

You chose Chocolate.

Figure 7-11 Reporting a menu item selection

Chapter 7: Working with Cascading Style Sheets with Ajax 255

First, in the <body> of the application, we’ll set up the images (“Ice Cream” and
“Sandwiches”) that the user can move the mouse over to open the menus, and create the <div>
elements that will hold the menus as well:

<body onclick = "hideMenu ()" onmousemove = "checkMenu (event)">

<H1>Creating an Ajax-enabled Menu System</H1>

<img id = "imagel" src="imagel.jpg"
style="1left:30; top:50; width:200; height:40;">

<div id = "menulDiv" style="position: absolute; left:30; top:100;
width:100; height: 70; visibility:hidden;"><div></div></div>

<img id = "image2" style="left:270; top:50; width:200;
height:40;" src="image2.jpg">

<div id = "menu2Div" style="position: absolute; left:270; top:100;
width:100; height: 70; visibility:hidden;"><div></div></div>

<div id = "targetDiv"s></divs>

</body>

Note that we connect the <body> element’s onmousemove event to the JavaScript function
checkMenu here (see the <body> tag above). This is the function that will respond to mouse
movements, opening and closing menus as needed.

In the checkMenu function, we start by creating a new mouse event object with another
function, mouseEventCreator:

function checkMenu (evt)

{

var e = new mouseEventCreator (evt);

}

The reason that we create our own mouse event object is that Internet Explorer and Firefox
handle the mouse in totally different ways, and we need to merge those ways into one object to
make our code easier. The mouse event we’ll create will have these properties:

e Holds the actual browser’s event object (which contains information about the event,
such as whether the mouse was being clicked, dragged, or just moved).

x andy Hold the (x, y) location at which the event happened, in pixels.

target Contains an object corresponding to the HTML element that was the target of the
mouse event. For example, if the event was a mouse click, this property would hold an
object corresponding to the HTML element that was clicked.

256 Ajax: A Beginner's Guide

Here is mouseEventCreator, which we just used to create our unified mouse event object,
taking into account the different ways that Internet Explorer and Firefox work with the mouse:

function mouseEventCreator (e)

{

if(e) {
this.e = e;
} else {
this.e = window.event;

}

if (e.pageX)

this.x = e.pageX;
} else {

this.x = e.clientX;
}

if (e.pageY)

this.y = e.pagey;
} else {

this.y = e.clientY;
}

if (e.target)

this.target = e.target;
} else {

this.target = e.srcElement;
}

}

So now, back in checkMenu, we have a unified mouse event object that has the e, x, y, and
target properties. In checkMenu, we’ll check if the mouse moved over either image, in which
case we’ll have to download menu items and display the corresponding menu. We check that
by examining the target property of the mouse event. If target holds an object matching either
image, we download the menu items for the corresponding menu (that is, menu 1 or 2). We’ll
use a function named getData to download the menu items—calling getData(1) will download
the items for the first menu (the Ice Cream menu) and calling getData(2) will download the
items for the second menu (the Sandwiches menu). Here’s what it looks like in checkMenu:

function checkMenu (evt)

{

var e = new mouseEventCreator (evt) ;
var imgObject;

imgObject = document.getElementById("imagel") ;

if (e.target == imgObject) {
getData (1) ;
}

Chapter 7: Working with Cascading Style Sheets with Ajax 257

imgObject = document.getElementById("image2") ;

if (e.target == imgObject) {
getData(2) ;
}

}

The whole job of the getData function is to download the menu items and to call a function,
showMenu, that will display the requested menu. The menu items for the first menu are stored
in the document items]1.text:

Strawberry, Vanilla, Chocolate
The menu items for the second menu are stored in the document items2.text:
Turkey, Beef, Sardine

Here’s what the getData function looks like—note that it just downloads the text stored in
items1.txt or items2.txt using Ajax and passes that text to the showMenu function:

function getData (menuNumber)

{
var XMLHttpRequestObject = false;
if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest() ;
} else if (window.ActiveXObject) {

XMLHttpRequestObject = new
ActiveXObject ("Microsoft.XMLHTTP") ;
}

var itemsSource;

if (menuNumber== 1) {

itemsSource = "itemsl.txt";
} else {
itemsSource = "items2.txt";

}

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", itemsSource) ;

XMLHttpRequestObject.onreadystatechange = function()

{

if (XMLHttpRequestObject.readyState == 4 &&

258 Ajax: A Beginner's Guide

XMLHttpRequestObject.status == 200) {
showMenu (menuNumber, XMLHttpRequestObject.responseText) ;

}
}

XMLHttpRequestObject.send (null) ;
}
}

The getData function calls the showMenu function, passing it the number of the menu
to display (1 or 2), and the text downloaded from the server that holds the menu items
(“Strawberry, Vanilla, Chocolate” or “Turkey, Beef, Sardine”’). The showMenu function
displays the correct menu with those menu items. This function begins by splitting the
downloaded text into a global array of items named menultems, using the handy JavaScript
split function. The split function will split a text string into an array of strings, if we pass that
function the character or characters to split the string on (which is a comma here). Here’s how
we create menultems, the array of menu items we want to display:

<html>
<head>
<script language = "javascript"s
var menultems;

function showMenu (menuNumber, itemsString)

{

menultems = itemsString.split(", ");

}

Each menu will actually be an HTML table of menu items, and we’ll construct that array
with a loop over the menu items in the menultems array, which looks like this in code:

function showMenu (menuNumber, itemsString)

{

var loopIndex;

menultems = itemsString.split(", ");
var menuText = "<table width = '100%'>";
if (menuItems.length != 0) {

for (var loopIndex = 0; loopIndex < menultems.length;
loopIndex++) {

var text = "displaySelection(" + loopIndex + ")";

}

Chapter 7: Working with Cascading Style Sheets with Ajax 259

menuText += "<tr><td "
+ "onclick='" + text + "'>" +
menultems [loopIndex] +
"e/td></tr>";
}
}

menuText += "</table>";

You might note that the onclick event in each cell in the menu’s HTML table is connected
to a function named displaySelection. When the user clicks a table cell in the HTML table (that
is, an item in our displayed menu), the browser will call the displaySelection function, which is
how we’ll handle menu item clicks.

Now that we’ve assembled the HTML for the menu, we can display that menu. We can
control the visibility of an HTML element with the CSS property visibility, which we can set
to "visible" or "hidden". Here’s how we load the HTML for the menu into the correct <div>
element and then make that menu visible:

function showMenu (menuNumber, itemsString)

{

var loopIndex;
var menuObject;

menultems = itemsString.split(", ");
var menuText = "<table width = '100%'>";
if (menultems.length != 0) {

for (var loopIndex = 0; loopIndex < menultems.length;
loopIndex++) {

var text = "displaySelection(" + loopIndex + ")";
menuText += "<tr><td "

+ "onclick='" + text + "'>" +

menultems [loopIndex] +

"</td></tr>";

}
}

menuText += "</table>";

if (menuNumber == "1"){
menuObject = document.getElementById ("menulDiv") ;
}

260 Ajax: A Beginner's Guide

if (menuNumber == "2"){
menuObject = document.getElementById ("menu2Div") ;
}

if (menuObject.style.visibility == "hidden") {
menuObject.innerHTML = menuText;
menuObject.style.visibility = "visible";

}
}

Whew. That displays a menu if the mouse moved over the matching image (that is, if the
target of the mouse move event was an image).

But what if the user is moving the mouse away from an image? In that case, we should
hide any menu that’s visible. We’ve already checked if the mouse is moving over an image
and displayed the corresponding menu in the checkMenu function; now we have to add code
to checkMenu to hide the menus when the user moves the mouse away from an image. Here’s
what that looks like in checkMenu—we’ll call a function named hideMenu to hide the menus:

function checkMenu (evt)
var e = new mouseEventCreator (evt) ;
var menuObject = null;
var imgObject;

imgObject = document.getElementById("imagel") ;

if (e.target == imgObject) {
getData (1) ;
}

imgObject = document.getElementById("image2") ;

if (e.target == imgObject) {
getData (2) ;
}

menuObject = document.getElementById ("menulDiv") ;
imgObject = document.getElementById("imagel") ;

if (menuObject.style.visibility == "visible"){
if (e.x < parselInt (menuObject.style.left) || e.y <

parseInt (imgObject.style.top) ||
e.x > (parseInt(imgObject.style.left) +
parseInt (imgObject.style.width))
|| e.y > (parseInt(menuObject.style.top) +
parseInt (menuObject.style.height))) {
hideMenu () ;

Chapter 7: Working with Cascading Style Sheets with Ajax

menuObject = document.getElementById ("menu2Div") ;
imgObject = document.getElementById("image2") ;

if (menuObject.style.visibility == "visible") {
if (e.x < parselInt(menuObject.style.left) || e.y <
parselInt (imgObject.style.top) ||
e.x > (parseInt(imgObject.style.left) +
parseInt (imgObject.style.width))
|| e.y > (parseInt(menuObject.style.top) +
parseInt (menuObject.style.height))){
hideMenu() ;

}
}
}

Ask the Expert

Q: What’s the JavaScript parselnt function in this code?

A: That code is checking whether the mouse is outside the boundaries of an image. It gets
those boundaries using style properties like menuObject.style.top or menuObject.style
left—and those properties are stored as text. To convert them from text to a number you
can compare the mouse position to, you use the JavaScript parselnt function. That function
converts text into an integer.

To hide the menus if the user has moved the mouse outside an image, the preceding code
calls the hideMenu function. That function just sets the visibility property of the menus to
"hidden" to hide the menus. Here’s what the code looks like:

function hideMenu ()

{

var menulDiv = document.getElementById("menulDiv") ;

if (menulDiv.style.visibility == “visible“){
menulDiv.innerHTML = "<div></div>";
menulDiv.style.visibility = "hidden";

}

var menu2Div = document.getElementById ("menu2Div") ;

if (menu2Div.style.visibility == “visible“){
menu2Div.innerHTML = "<div></div>";

menu2Div.style.visibility = "hidden";

}
}

261

262

Ajax: A Beginner's Guide

Wow, that’s a lot of JavaScript. But we’re coming to the end of this example. The last
function is the displaySelection function, which is called by the browser when a menu item is
clicked. The displaySelection function is passed the number of the menu item that was clicked
(for example, in the first menu, “Strawberry” is item 0, “Vanilla” is item 1, and “Chocolate”
is item 2), and the job of this function is to display the user’s selection in the web page. The
displaySelection function translates the item number (0, 1, or 2) into the English-language item
name (“Strawberry”, “Vanilla”, or “Chocolate”) by using that item number as an index in the
array of menu item names that we created earlier—menultems. So here, finally, is the way that
we display the user’s menu selection:

function displaySelection (index)

{

var targetDiv = document.getElementById("targetDiv") ;

targetDiv.innerHTML = "You chose " + menultems[index] + ".";
}
And that completes this example. Here’s the whole code for this application—note that we
also style the menu and display <div> elements in a <style> element here (menus.html):

<html>
<head>

<title>Creating an Ajax-enabled Menu System</title>

<style>

#targetDiv {
color: #00BBBB;
font-size: 24pt;
font-weight: bold;
font-family: arial;

}

#menulDiv {
color: #222222;
background-color: #FFCCFF;
font-weight: bold;
font-family: arial;
visibility: hidden;
cursor: hand;

}

#menu2Div {
color: #222222;
background-color: #FFCCFF;
font-weight: bold;
font-family: arial;
visibility: hidden;
cursor: hand;

Chapter 7: Working with Cascading Style Sheets with Ajax

</style>

<script language = "javascript"s>
var menultems;

function checkMenu (evt)

{

}

var e = new mouseEventCreator (evt) ;
var menuObject = null;
var imgObject;

imgObject = document.getElementById("imagel") ;

if (e.target == imgObject) {
getData (1) ;
1
imgObject = document.getElementById("image2") ;
if (e.target == imgObject) {
getData(2) ;
1

menuObject = document.getElementById ("menulDiv") ;
imgObject = document.getElementById("imagel") ;

if (menuObject.style.visibility == "visible") {
if (e.x < parselnt (menuObject.style.left) || e.y <

parselnt (imgObject.style.top) ||
e.x > (parselnt (imgObject.style.left) +
parselnt (imgObject.style.width))
|| e.y > (parselnt (menuObject.style.top) +
parselnt (menuObject.style.height))) {
hideMenu () ;

menuObject = document.getElementById ("menu2Div") ;
imgObject = document.getElementById ("image2") ;

if (menuObject.style.visibility == "visible") {
if (e.x < parselnt (menuObject.style.left) || e.y <
parselnt (imgObject.style.top) ||
e.x > (parselnt (imgObject.style.left) +
parselnt (imgObject.style.width))
|| e.y > (parselnt (menuObject.style.top) +
parselnt (menuObject.style.height))) {
hideMenu () ;
}

}

263

264 Ajax: A Beginner's Guide

function mouseEventCreator (e)

{

}

if (e) {

this.e = e;
} else {

this.e = window.event;
1

if (e.pageXx) {
this.x = e.pageX;
} else {
this.x = e.clientX;

}

if (e.pagey) {
this.y = e.pageY;
} else {
this.y = e.clientY;

}

if (e.target) {
this.target = e.target;
} else {
this.target = e.srcElement;

}

function getData (menuNumber)

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;

var itemsSource;

if (menuNumber== 1) {

itemsSource = "itemsl.txt";
} else {
itemsSource = "items2.txt";

}

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", itemsSource) ;

XMLHttpRequestObject.onreadystatechange = function()

Chapter 7: Working with Cascading Style Sheets with Ajax

{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
showMenu (menuNumber, XMLHttpRequestObject.responseText) ;
}

XMLHttpRequestObject.send (null) ;

}
}

function showMenu (menuNumber, itemsString)

{

var loopIndex;
var menuObject;

menultems = itemsString.split (", ");
var menuText = "<table width = '100%'>";
if (menultems.length != 0) ({

for (var loopIndex = 0; loopIndex < menultems.length;
loopIndex++) {

var text = "displaySelection(" + loopIndex + ")";
menuText += "<tr><td "
+ "onclick='" + text + "'>" 4+

menultems [loopIndex] +
"</tds></tr>";
}
}

menuText += "</table>";

if (menuNumber == "1"){
menuObject = document.getElementById("menulDiv") ;

}

if (menuNumber == "2") {
menuObject = document.getElementById ("menu2Div") ;

1

if (menuObject.style.visibility == "hidden") {
menuObject.innerHTML = menuText;
menuObject.style.visibility = "visible";

}
}

function hideMenu ()
{

var menulDiv = document.getElementById("menulDiv") ;

if (menulDiv.style.visibility == "visible"){

265

266 Ajax: A Beginner's Guide

menulDiv.innerHTML = "<divs></divs>";
menulDiv.style.visibility = "hidden";
var menu2Div = document.getElementById("menu2Div") ;
if (menu2Div.style.visibility == "visible"){
menu2Div.innerHTML = "<divs></divs>";
menu2Div.style.visibility = "hidden";
}
function displaySelection (index)
{
var targetDiv = document.getElementById("targetDiv") ;
targetDiv.innerHTML = "You chose " + menultems[index] + ".";
}
</scripts>
</head>
<body onclick = "hideMenu ()" onmousemove = "checkMenu (event)">

<Hl1>Creating an Ajax-enabled Menu System</H1>

<img id = "imagel" src="imagel.jpg"
style="1left:30; top:50; width:200; height:40;">

<div id = "menulDiv" style="position: absolute; left:30; top:100;
width:100; height: 70; visibility:hidden;"><divs></div></div>

<img id = "image2" style="left:270; top:50; width:200;
height:40;" src="image2.jpg">

<div id = "menu2Div" style="position: absolute; left:270; top:100;
width:100; height: 70; visibility:hidden;"><divs></div></div>

<div id = "targetDiv"s></divs>

</body>
</html>

That finishes menus.html, our first full-scale in-depth Ajax example. There’s a lot of CSS
and JavaScript going on here—and that’s precisely the point. There is usually a lot of CSS and
JavaScript going on in most Ajax applications.

You now have a working knowledge of how to handle CSS—not to mention the
mouse—in Ajax applications, and you can make the data that you download using Ajax appear
anywhere in a page you want it to appear, no page refresh needed. Cool.

Chapter 8

Handling Dynamic
HTML with-Ajax

267

268 Ajax: A Beginner's Guide

Key Skills & Concepts

Updating pages with dynamic HTML methods
Updating pages with dynamic HTML properties
Creating elements on-the-fly

Updating tables with data

Writing documents to the browser

As stated in Chapter 7, the primary reason to use Ajax is that it enables you to update web
pages without requiring a page refresh in the browser. You have seen how to use CSS to
accomplish that; in this chapter, you’re going to see how to work with Ajax and dynamic HTML.
Like CSS, dynamic HTML offers ways to update and manage your web page. In many
ways, dynamic HTML is more powerful than CSS, because by using dynamic HTML, you can
alter the HTML in a page. We’ll start off by examining just how that works.

Updating Pages with Dynamic HTML Methods

There are two main ways to modify the HTML in a web page using dynamic HTML: methods
or properties. We’ve already used the innerHTML dynamic HTML property throughout this
book to insert downloaded data into a web page:

if (XMLHttpRequestObject) {
var obj = document.getElementById("targetDiv") ;
XMLHttpRequestObject.open ("GET", dataSource) ;

XMLHttpRequestObject .onreadystatechange = function()

{

if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200)
obj.innerHTML = XMLHttpRequestObject.responseText;
}

}

There are other dynamic HTML properties available, too, as you’re going to see in this
chapter. But what’s this about using dynamic HTML methods? The main methods that you can
use to modify the HTML in a web page are the following:

insertAdjacentHTML Lets you insert HTML next to an element that already exists

insertAdjacentText Lets you insert text next to an element that already exists

Chapter 8: Handling Dynamic HTML with Ajox 269

You can specify where the new text or HTML will go with respect to the already existing
element by passing the constants "BeforeBegin", "AfterBegin", "BeforeEnd", or "AfterEnd" to
the insertAdjacentHTML and insertAdjacentText methods.

In the following example, insertAdjacent.html, we’re going to use the insertAdjacent
method to insert some text and a text field when the user clicks a button. We start with the
button inside a <div> element named targetDiv:

<body>

<center>
<hls>
Updating a Page With insertAdjacentHTML
</hl>
</center>

<div id="targetDiv">
<center>
<form>
<input type=button value="Click here"
onclick="addHTML () ">
</form>
</centers>
</div>

</body>

The button is connected to a JavaScript function named addHTML, which will add the
HTML needed for the new text and text field:

<script language="JavaScript"s>

function addHTML ()

{

}
</script>

In addHTML, we can use the insertAdjacentHTML method to add the HTML we want
after the targetDiv <div> element. To add that HTML after the end of the targetDiv <div>
element, we can pass the constant "AfterEnd" to the insertAdjacentHTML method like this:

<script language="JavaScript'">

function addHTML ()

270 Ajax: A Beginner's Guide

{

targetDiv.insertAdjacentHTML ("AfterEnd",

}

</script>

And we have to specify what HTML we want to insert, which we can do like this to create
a text field and some new text:

<script language="JavaScript"s>

function addHTML ()
{
targetDiv.insertAdjacentHTML ("AfterEnd",
"<p><input type=text value='Hello there.'> See? A new text
field.</p>");
}

</scripts>
Here’s the whole thing, insertAdjacent.html:

<html>
<head>
<titles>
Updating a Page With insertAdjacentHTML
</title>

<script language="JavaScript"s>
function addHTML ()
{
targetDiv.insertAdjacentHTML ("AfterEnd",
"<p><input type=text value='Hello there.'> See? A new text
field.</p>");
}

</scripts>
</heads>

<body>

<centers>
<hl>
Updating a Page With insertAdjacentHTML
</hl>
</centers>

Chapter 8: Handling Dynamic HTML with Ajax 271

<} Updating a Page With insertAdjacentHTML - Microsoft Internet Explorer

File Edit View Fawaorites Tools Help
Qeaxk - & - [HA B (o] Psearch Frravortes @ | -] -~ D B @ 3
Address @ http:fflocalhost) chaptergfinsertadjacent. html V| Go Links >*

Updating a Page With insertAdjacentHT ML

Figure 8-1 insertAdjacent.html at work

<div id="targetDiv">
<center>
<form>
<input type=button value="Click here"
onclick="addHTML () ">
</form>
</centers>
</div>

</body>
</html>

You can see this page at work in Figure 8-1.
When you click the button, a new text field (complete with text in it) and some additional

text appears, as shown in Figure 8-2. Cool.

A Updating a Page With insertAdjacentHTML - Microsoft Internet Explorer X
File Edit View Favorites Tools Help 't"
Qiak ~ & - ¥ A (| Poearch rFavartes 8 | D- & W - L @& @ 3

Address @ http: fflocalhost fchapterdfinsertadjacent, html V| Go Links **

Updating a Page With insertAdjacentHTML

R

Hella there. Zee? A new text feld

Figure 8-2 Adding HTML to insertAdjacent.html

272 Ajax: A Beginner's Guide

A Updating a Page With insertAdjacentHTML - Microsoft Internet Explorer |:||§|rz|
File Edit View Favorites Tools Help If.'
Qback - O - ¥ A (0| Poearch TrFavartes 8 | @- & W - L @B @ 3
Address @ http: fflocalhost fchapterdfinsertadjacent, html V| Go Links **

- Te - - 1
Updating a Page With insertAdjacentHTML
Click here
TR
See? A new text field.
See? A new text field.

Figure 8-3 Adding more HTML to insertAdjacent.html

If you click the button again, the new HTML is added to the page again, as you see in
Figure 8-3.

That’s a great way to go if you want to use Ajax to reconfigure your web page, as
when you want to add (or remove) tables from the page, depending on what data you’ve
downloaded.

On the other hand, there’s an issue here. The insertAdjacentHTML and insertAdjacentText
methods won’t work in Firefox-type browsers. If you want to maintain cross-browser
compatibility, you can work with the dynamic HTML properties that are coming up next.

Updating Pages with Dynamic HTML Properties

No matter whether you’re in Internet Explorer or Firefox, each item in a web page supports the
dynamic HTML properties:

innerText Lets you change the text between the start and end tags of an element (not
supported by Mozilla/Netscape/Firefox)

outerText Lets you change all the element’s text, including the start and end tags (not
supported by Mozilla/Netscape/Firefox)

innerHTML Changes contents of an element between start and end tags; can include
HTML

outerHTML Changes contents of an element, including start and end tags; treats text as
HTML

Chapter 8: Handling Dynamic HTML with Ajox 273

As mentioned earlier, you’ve already seen the innerHTML property throughout the book:

if (XMLHttpRequestObject) {
var obj = document.getElementById("targetDiv") ;
XMLHttpRequestObject.open ("GET", dataSource) ;

XMLHttpRequestObject.onreadystatechange = function()

{

if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200)
obj.innerHTML = XMLHttpRequestObject.responseText;
}

}

Here’s an example, innerText.html, that uses the innerText property. This example lets you
click an HTML <h1> header—and when you do, it changes the text in that header. We start with
the header itself, and connect a function named changeHeader to the header’s onclick event:

<body>
<center>
<hl id = "header"
onclick = "changeHeader () ">
Changing Text With the innerText Property
</hl>
Click the above header to make it change.
</centers>
</body>

Now when the user clicks the header, the changeHeader function will be called:

<head>
<titles
Changing Text With the innerText Property
</title>
<script language = "JavaScript"s>

function changeHeader ()

{

}
</scripts>

</heads>

274 Ajax: A Beginner's Guide

In the changeHeader function, you can place new text inside the <h1> header using the
innerText property:

<head>
<titles
Changing Text With the innerText Property
</title>
<script language = "JavaScript"s>

function changeHeader ()

{

var header = document.getElementById("header") ;
header.innerText = "Here is the new header.";

}

</script>
</head>

Here’s what the whole example, innerText.html, looks like:

<html>
<head>
<title>
Changing Text With the innerText Property
</title>
<script language = "JavaScript"s>
function changeHeader ()
{
var header = document.getElementById("header");
header.innerText = "Here is the new header.";
</script>
</head>
<body>
<centers>
<hl id = "header"
onclick = "changeHeader () ">

Changing Text With the innerText Property
</hl>

Chapter 8: Handling Dynamic HTML with Ajax

A Changing Text With the innerText Property - Microsoft Internet Explorer

File Edit View Favorites Tools Help

@Back -) ERE .;b O Search <7 Favorites 42

Address @ http: fflacalhost fchapterdfinnertext, html

g-2H-UEd @3

v| Go Links **

Changing Text With the innerText Property

Click the above header to malkee it change.

Figure 8-4 innerText.html at work

Click the above header to make it change.
</centers>

</body>
</html>
You can see this page at work in Figure 8-4.
When you click the header, the text in that header is changed, as you see in Figure 8-5.

Nice.

You use the innerText property to set the inner text of an element, rather than rewrite it
entirely. Note that if you had wanted to insert HTML into the header, you could have used
the innerHTML property instead. Here’s an example that inserts a <marquee> element into

‘A Changing Text With the innerText Property - Microsoft Internet Explorer

File Edit View Favorites Tools Help

Qiack ~ O - ¥ A (| Poearch rFavartes 8 | D- & W - L @ @ 3

Address @ http: fflacalhost fchapterdfinnertext, html

Here is the newl/header.

Click the above header to malkee it change.

Figure 8-5 Changing the text in a header in innerText.html

275

276 Ajax: A Beginner's Guide

the header that displays a scrolling marquee—note that this element only works in Internet
Explorer (innerHTML.html):

<html>

<head>
<title>
Changing HTML With the innerHTML Property
</title>

<script language = "JavaScript"s>

function changeHeader ()

{

var header = document.getElementById("header") ;
header.innerHTML = "<marquee>Here is the new
header.</marquee>";

}
</scripts>
</heads>
<body>

<center>
<hl id = "header"
onclick = "changeHeader () ">
Changing HTML With the innerHTML Property
</hl>

Click the above header to make it change.
</centers>

</body>

</html>

You can see innerHTML at work in Figure 8-6. When you click the header, a new scrolling
marquee appears (in Internet Explorer, anyway). The HTML inside the <h1> header has been
replaced, and the new marquee is displayed as a scrolling <h1> header.

What if you want to change the <h1> header itself to, say, an <h3> header instead? You
could use the outerHTML property instead of innerHTML. The outerHTML property lets
you rewrite the HTML that contains the element you’re working on. In other words, using the
innerHTML property lets you edit the HTML inside the current element, while the outerHTML
property lets you change all the HTML of the current element.

Chapter 8: Handling Dynamic HTML with Ajax

A Changing HTML With the innerHTML Property - Microsoft Internet Explorer

File Edit View Favorites Tools Help

Qback ~ O - ¥ A (| Poearch rFavortes 8 | R- & W - L @& @ 3

Address @ http: fflocalhost fchapterdfinnerHTML . html

v| Go Links **

Here is the new header.

Click the above header to malkee it change.

Figure 8-6 Changing the HTML in a header

Here’s how that might work, in a new example, outerHTML.html. When you click the

<h1> header in this example, the changeHeader function will change it to an <h3> header
using the outerHTML property:

<script language = "JavaScript"s>

function changeHeader ()

{

var header = document.getElementById("header") ;
header.outerHTML =

"<h3>Here is the new, smaller header</h3>"

}

</scripts>

Here’s what the whole example, outerHTML.html, looks like:

<html>
<head>
<titles
Changing HTML With the outerHTML Property
</title>
<script language = "JavaScript"s>
function changeHeader ()
{
var header = document.getElementById("header") ;
header.outerHTML =
"<h3>Here is the new, smaller header</h3>"
}
</scripts>

</heads>

277

278 Ajax: A Beginner's Guide

A Changing HTML With the outerHTML Property - Microsoft Internet Explorer

File Edit View

Favorites Tools Help Plt!'
@Back -) ERE .‘j D search <7 Favorites 42 - =y |Ia_9’—‘| LB 93
Address @ http: fflocalhost fchaptersfouterHTML, html

v| Go Links **

Changing HTML With the outerHTML Property

Click the above header to malkee it change.

Figure 8-7 outerHTML.html in action

<body>
<center>
<hl id = header
onclick = "changeHeader () ">
Changing HTML With the outerHTML Property
</hl>

Click the above header to make it change.
</centers>

</body>

</html>

You can see outerHTML.html doing its thing in Figure 8-7.

When the user clicks the <h1> header in Figure 8-7, the changeHeader function changes it
into the <h3> header that you see in Figure 8-8, using the outerHTML property. Nice.

2 Changing HTML With the outerHTML Property - Microsoft Internet Explorer

B
File Edit W¥iew Favorites Tools Help

ar
@Back LA > | @ @ .-\;: ,OSean:I'l 7 Favorites e =~ _4 |j i _ ﬁ ‘j, ‘3
Address @ hittp: /{localhost fchapterafouterHTML. html

v| Go Links >
Here is the new, smaller header

Click the above header to make it change.

Figure 8-8 Changing an <h1> header to an <h3> header

Chapter 8: Handling Dynamic HTML with Ajox 279

When it comes to dynamic HTML, you’re going to find that Internet Explorer has more
functionality than any other browser—and that’s true of the topics thus far in this chapter as
well: of the dynamic HTML properties we’ve been discussing, only innerHTML is supported
in Firefox; all the others (innerText, outerText, and outerHTML) are supported in Internet
Explorer only.

In fact, there’s even more dynamic HTML built into Internet Explorer that will let you alter
the contents of a web page, as you might do in Ajax-enabled applications. Besides the methods
and properties we’ve discussed in this chapter, you can also use text ranges.

Using Text Ranges in Internet Explorer

In Internet Explorer, you can address sections of text and handle them using text ranges. There
are all kinds of methods built into text ranges, but we’ll only take a look at a simple example in
this chapter because text ranges are only available in Internet Explorer.

Here’s an example, textRanges.html, that places text into a text range and then pastes
HTML over that range to replace it. This example starts with a button that, when clicked, calls
a function named changeText:

<body>
<center>
<hl>
Replacing Text With Text Ranges
</hl>
</centers>

<input type="button" wvalue="Click here"
onclick="changeText () ">

<div id="divi">
Click the button to change this text.
</div>
</body>
In the changeText function, we create a new text range for the document:

<script language="JavaScript"s>

function changeText ()

{

var range = document.body.createTextRange() ;

}

</script>

280 Ajax: A Beginner's Guide

We then create an object corresponding to the <div> element we want to overwrite:

<script language="JavaScript"s>

function changeText ()
{

var range = document.body.createTextRange () ;
var div = document.getElementById("divl") ;

}

</scripts>
Next, we move the text range so that it encompasses the <div> element:

<script language="JavaScript"s>

function changeText ()

var range = document.body.createTextRange () ;
var div = document.getElementById ("divl") ;
range.moveToElementText (div) ;

</script>

Finally, we can use the new text range’s pasteHTML method to paste some text, replacing
the text that’s in the <div> now (“Click the button to change this text.”) to the new text (“You
have successfully clicked the button.”):

<script language="JavaScript"s>

function changeText ()
var range = document.body.createTextRange () ;
var div = document.getElementById ("divl") ;
range .moveToElementText (div) ;

range.pasteHTML ("You have successfully clicked the
button.") ;

}

</scripts>

Chapter 8: Handling Dynamic HTML with Ajax

Here’s the whole example, textRanges.html:

<html>
<head>
<titles
Replacing Text With Text Ranges
</title>

<script language="JavaScript'"s>

function changeText ()

{
var range = document.body.createTextRange () ;
var div = document.getElementById ("divl") ;
range .moveToElementText (div) ;
range.pasteHTML ("You have successfully clicked the
button.") ;

}

</script>
</head>

<body>
<center>
<hls>
Replacing Text With Text Ranges
</hl>
</centers>

<input type="button" wvalue="Click here"
onclick="changeText () ">

<div id="divl"s
Click the button to change this text.
</div>

</body>
</html>

You can see this example in Figure 8-9.

When you click the button in this example, the code pastes new text over the text range
enclosing the <div> element, and you can see the result in Figure 8-10.

Text ranges are powerful tools, but you should probably stay away from them in Ajax
applications unless you’re sure that you’re going to be dealing only with Internet Explorer;
otherwise, you’ll have to duplicate the same operation in code for other browsers.

281

282 Ajax: A Beginner's Guide

& | Replacing Text With Text Ranges - Microsoft Internet Explorer

File Edit View Favorites Tools Help
Qback ~ O - ¥ A (| Poearch rFavartes 8 | @- & W - @& @ 3

Address @ http: fflocalhost fchapterdftextranges, html V| Go

Links **

Replacing Text With Text Ranges

Click: the button to change this text.

Figure 8-9 textRanges.html in action

As you know, you can configure your page with data downloaded using Ajax. And you
can even write new HTML to the page to add controls as needed—for example, you might be
downloading house listings from a real estate site, and need to create buttons so the user can
e-mail the listing agent. Creating new HTML is a very common thing to do in Ajax, and as
you’ve seen, you can create that new HTML just by writing it to the page. On the other hand,
if you have a lot of HTML to write, it can get confusing.

There is a special dynamic HTML method, createElement, you can use to create new
HTML elements, saving you time if you have to create a lot of new elements. createElement
has the added benefit of working in both Internet Explorer and Firefox-type browsers.

& | Replacing Text With Text Ranges - Microsoft Internet Explorer

File Edit View Favorites Tools Help '1.
Qiack ~ O - ¥ A 0| Poearch Trravartes 8 | D- & W - L @B @ 3
Address @ http: fflocalhost fchapterdftextranges, html V| Go Links **

Replacing Text With Text Ranges

X

Tou have successfully clicked the button.

Figure 8-10 Replacing the fext in a text range

Chapter 8: Handling Dynamic HTML with Ajax

Creating New HTML Elements with createElement

Ajax applications frequently need to create new HTML elements. For example, if you
download data for a Rolodex-like phone directory, you’ll have to create the HTML for the
controls used in the Rolodex. Or if you write an Ajax e-mail application that downloads e-mail
text before the user asks for it, to avoid delays, you’ll have to create buttons and text fields to
enable the user to answer their e-mail. Or if you’re interacting with an online database, you’ll
have to create an HTML table on-the-fly to display that data in.

All these tasks can be performed with the createElement method, and we’ll take a look
at that method in a new example, createElement.html, now. When you click a button in this
example, the example creates a text field with text in it, a working button (clicking it will
display a JavaScript alert dialog box), and some text. How can we create just text? It turns out
that we can create text nodes with a method named createTextNode, and that’s what we’ll do,
adding the text we want to display to that text node.

We start the createElement.html example with the button the user clicks to create the new
elements:

<body>
<center>
<hls>
Creating New Elements
</hl>
</centers>

<form>
<input type="button" wvalue="Click here"
onclick="createNewElements () ">
</form>

</body>
‘When the button is clicked, a function named createNewElements is called:

<gscript language="JavaScript"s>
function createNewElements ()

{

}
</script>
We’ll add the new elements we create in this example (a text field, a button, and a text
node) to a <div> element, and start by creating the <div> element now:

<script language="JavaScript"s>
function createNewElements ()

283

284 Ajax: A Beginner's Guide

{

var newDiv;

newDiv = document.createElement ("div");

}
</script>
Note the use of the createElement method here, which creates the new <div> element.
We can access the attributes of newly created elements as properties of the element objects.
For example, to set the ID property of the new <div> element, we only have to use the <div>
object’s id property:
<script language="JavaScript"s>
function createNewElements ()

{

var newDiv;

newDiv = document.createElement ("div") ;
newDiv.id = "NewDIV";

}
</script>

Now we’ll create the new HTML elements that we’ll add to the <div> element, starting
with the new text field. Text fields are <input> elements, so we create them like this:

<script language="JavaScript"s>
function createNewElements ()

{

var newDiv, newTextfield, newText, newButton;

newDiv = document.createElement ("div") ;
newDiv.id = "NewDIV";

newTextfield = document.createElement ("input") ;

.

</script>

Chapter 8: Handling Dynamic HTML with Ajox 285

That creates a generic <input> element. How do we make it a text field? We have to set the
type attribute to "text", and we can do that like this:

<script language="JavaScript"s>
function createNewElements ()

{

var newDiv, newTextfield, newText, newButton;

newDiv = document.createElement ("div") ;
newDiv.id = "NewDIV";

newTextfield = document.createElement ("input") ;
newTextfield.type = "text";

}
</scripts>

We can also add text to the new text field by setting its value attribute like this, where
we’re storing the text “Hello!” in the new text field:

<script language="JavaScript"s>
function createNewElements ()

{

var newDiv, newTextfield, newText, newButton;

newDiv = document.createElement ("div") ;
newDiv.id = "NewDIV";

newTextfield = document.createElement ("input") ;

newTextfield.type = "text";
newTextfield.value = "Hello!";
</script>

Okay, that creates the new text field, which is now stored in the newTextfield object. Next,
let’s create the new button, which will also be an <input> control:

<script language="JavaScript"s>
function createNewElements ()

{

var newDiv, newTextfield, newText, newButton;

newDiv = document.createElement ("div") ;
newDiv.id = "NewDIV";

286 Ajax: A Beginner's Guide

newTextfield = document.createElement ("input") ;
newTextfield.type = "text";
newTextfield.value = "Hello!";

newButton = document.createElement ("input") ;

}
</script>
We’ll make it a button by setting its type attribute to "button" and set its caption to "New
Button":

<script language="JavaScript">
function createNewElements ()

{

var newDiv, newTextfield, newText, newButton;

newDiv = document.createElement ("div") ;
newDiv.id = "NewDIV";

newTextfield = document.createElement ("input") ;
newTextfield.type = "text";

newTextfield.value = "Hello!";

newButton = document.createElement ("input") ;

newButton.type = "button";
newButton.value = "New Button";
</script>

Now we can create some code—a function named sayHello—that will be called when the
button is clicked. That new function will call the JavaScript alert function to display an alert
dialog box that says “Hello!”:

<script language="JavaScript"s>
function createNewElements ()

{

var newDiv, newTextfield, newText, newButton;

newDiv = document.createElement ("div") ;
newDiv.id = "NewDIV";

Chapter 8: Handling Dynamic HTML with Ajax

newTextfield = document.createElement ("input") ;
newTextfield.type = "text";
newTextfield.value = "Hello!";

newButton = document.createElement ("input") ;
newButton.type = "button";
newButton.value = "New Button";

function sayHello()

{
}

alert ("Hello!");

</script>

And we can connect the sayHello function to the new button by assigning the sayHello
function to the button’s onclick attribute this way:

<script language="JavaScript"s>
function createNewElements ()

{

var newDiv, newTextfield, newText, newButton;

newDiv = document.createElement ("div") ;
newDiv.id = "NewDIV";

newTextfield = document.createElement ("input") ;
newTextfield.type = "text";
newTextfield.value = "Hello!";

newButton = document.createElement ("input") ;
newButton.type = "button";

newButton.value = "New Button";
newButton.onclick = sayHello;

function sayHello()

{
}

alert ("Hello!") ;

</script>

287

288 Ajax: A Beginner's Guide

Now it’s time to create the text node, which we can do with the createTextNode method:

<script language="JavaScript"s>
function createNewElements ()

{

var newDiv, newTextfield, newText, newButton;

newDiv = document.createElement ("div") ;
newDiv.id = "NewDIV";

newTextfield = document.createElement ("input") ;
newTextfield.type = "text";
newTextfield.value = "Hello!";

newButton = document.createElement ("input") ;
newButton.type = "button";

newButton.value = "New Button";
newButton.onclick = sayHello;

newText = document.createTextNode ("Here is the new text.");

}
</scripts>

Great, we’ve created a text field, a button, and a text node. The next step is to install all
those items into the <div> element we’ve created, newDiv, and we’ll use the dynamic HTML
insertBefore method. You use this method to insert new elements into a web page, passing
it the new element object to insert and the current element object you want to insert the new
object before. In this case, we’ll insert the new objects into the <div> element we created—and
since there’s no existing object in the <div> element to place our new objects before, we’ll
pass a value of null for that argument. Here’s how we insert the new button, text field, and text
node into the <div> element we created:

<script language="JavaScript"s>
function createNewElements ()

{

var newDiv, newTextfield, newText, newButton;

newDiv = document.createElement ("div") ;
newDiv.id = "NewDIV";

newTextfield = document.createElement ("input") ;
newTextfield.type = "text";
newTextfield.value = "Hello!";

Chapter 8: Handling Dynamic HTML with Ajox 289

newButton = document.createElement ("input") ;
newButton.type = "button";

newButton.value = "New Button";
newButton.onclick = sayHello;

newText = document.createTextNode ("Here is the new text.");

newDiv.insertBefore (newButton, null);
newDiv.insertBefore (newTextfield, null);
newDiv.insertBefore (newText, null);

}
</script>
Next, we insert the <div> element, which now contains the new text field, button, and text
node, into the web page. We can insert that <div> element into the page’s <body> element by
referring to the <body> element as document.body this way:

<script language="JavaScript"s>
function createNewElements ()

{

var newDiv, newTextfield, newText, newButton;

newDiv = document.createElement ("div") ;
newDiv.id = "NewDIV";

newTextfield = document.createElement ("input") ;
newTextfield.type = "text";
newTextfield.value = "Hello!";

newButton = document.createElement ("input") ;
newButton.type = "button";

newButton.value = "New Button";
newButton.onclick = sayHello;

newText = document.createTextNode ("Here is the new text.");

newDiv.insertBefore (newButton, null) ;
newDiv.insertBefore (newTextfield, null) ;
newDiv.insertBefore (newText, null) ;

document.body.insertBefore (newDiv, null);

}

</script>

290 Ajax: A Beginner's Guide

¢ | Using createElement to create new elements - Microsoft Internet Explorer |._||E|rg|
File Edit ‘Wiew Favorites Tools Help ﬂ'
Qoiak - & - [B (& Psearch FrFavoites & | 2- % W - JE @ 3

Address @ http:f flocalhost{chapterSicreateElement. html V| Go Links >

Using createElement to create new elements
Click me fs

[MewButtan JHelal Here is the new text.

Figure 8-11 Creating new elements on-the-fly

Microsoft Internet Explorer. rz|

Q Hella!

Figure 8-12 Clicking the button displays an alert dialog box.

And that’s it—we’ve created three new objects, inserted them into a <div> element, and
inserted the <div> element into the web page. You can see the results in Figure 8-11; when the
user clicks the button, a new button, text field, and text node are all added.

The button is functional, too—clicking it displays the alert dialog box you see in Figure 8-12.
Very nice.

That gives you an overview of creating new HTML elements and adding them to a web
page. One of the items Ajax developers find themselves creating from scratch often is the
HTML table, such as when they download data from a database and need to display it. In fact,
creating and editing tables is such a common thing to do that there is special support for it in
dynamic HTML that is supported by both Internet Explorer and Firefox-type browsers.

Editing Tables On-the-Fly

In dynamic HTML, table objects (that is, objects corresponding to a <table> element) have
these properties and methods that you can use to edit their contents:

tableObject.rows(index) Returns a collection (array) of the rows in the table.

tableObject.insertRow(index) Inserts a new row. Returns the inserted <tr> element
(which will be empty), or null for failure. If index isn’t supplied, then the <tr> element will
be inserted at the end.

Chapter 8: Handling Dynamic HTML with Ajax

tableObject.deleteRow(index) Deletes a row. The index value indicates the row index
of the row to delete.

And here are the properties and methods for objects corresponding to table row objects
(that is, objects corresponding to <tr> elements):

tableObject.cells(index) Returns a collection (array) of the cells in the row.

tableObject.row(index) Returns the row index of the row. Useful for inserting and
deleting rows.

tableObject.insertCell(index) Inserts a new cell and returns the inserted <td> element
(which will be empty), or null for failure. If index isn’t supplied, then the <td> element
will be inserted at the end of the row.

tableObject.deleteCell(index) Deletes a cell. The index value indicates the position in
the cell collection to delete.

Let’s put editing tables on-the-fly to work in an example, editTable.html. This example
will edit a table by adding new rows at the click of a button (and it’ll work in Internet Explorer
and Firefox). We start by displaying an HTML table:

<body>
<center>
<hls>
Editing HTML Tables
</hl>

<table id="tablel" border="2">

<tr>
<td>Fe</td>
<td>Fi</td>
<td>Fo</td>
<td>Fum</td>

</tr>

<tr>
<td>Fe</td>
<td>Fi</td>
<td>Fo</td>
<td>Fum</td>

</tr>

<tr>
<td>Fe</td>
<td>Fi</td>
<td>Fo</td>
<td>Fum</td>

</tr>

</table>

</centers>
</body>

291

292 Ajax: A Beginner's Guide

Note that we’ve given an ID to the table, "tablel", which will allow us to access that
table in JavaScript. Let’s add a button with the caption “Add a new row” that connects to
a JavaScript function named createRow:

<body>
<center>
<hl>
Editing HTML Tables
</hl>
<table id="tablel" border="2">
<tr>
<td>Fe</td>
<td>Fi</td>
<td>Fo</td>
<td>Fum</td>
</tr>
<tr>
<td>Fe</td>
<td>Fi</td>
<td>Fo</td>
<td>Fum</td>
</tr>
<tr>
<td>Fe</td>
<td>Fi</td>
<td>Fo</td>
<td>Fum</td>
</tr>
</table>

<input type="button" value="Add a new row"
onclick="createRow() ">
</centers>
</body>

In the createRow function, we can get an object corresponding to tablel:

<script language="javascript"s>
function createRow ()

{

var tablel = document.getElementById("tablel");

}

</script>

Chapter 8: Handling Dynamic HTML with Ajox 293

Then we call the table object’s insertRow method to insert a new row into the table—this
method returns the new row object so that we can work with it, adding cells to the row:

<script language="javascript"s
function createRow ()
{
var tablel = document.getElementById("tablel") ;
var newRow = tablel.insertRow(3);

}

</scripts>

Note that we’re inserting row 3 here because the table already has three rows—that is,
rows 0, 1, and 2. Now we’ve got a new row object to work with, and we’ll do that by adding
cells to it with the row object’s insertCell method.

Each row in the table has four cells, cells 0, 1, 2, and 3. You can add cell O to the newly
created row this way:

<script language="javascript"s>
function createRow ()
var tablel = document.getElementById("tablel");
var newRow = tablel.insertRow(3) ;

var newCell = newRow.insertCell (0);

}

</script>

The insertCell method returns the new cell object. How do we add data to this new cell?
We can use its innerHTML property, as we’ve done so often before with <div> elements:

<script language="javascript"s
function createRow ()
var tablel = document.getElementById("tablel") ;
var newRow tablel.insertRow (3) ;

var newCell = newRow.insertCell (0) ;
newCell.innerHTML = "Fe";

}

</scripts>

294 Ajax: A Beginner's Guide

That’s fine—we’ve been able to insert text data into the cell we just inserted into the new
row. We can also create the other three cells in the row and add data to them as well:

<script language="javascript"s
function createRow ()
var tablel = document.getElementById("tablel") ;
var newRow = tablel.insertRow(3) ;

var newCell = newRow.insertCell (0) ;
newCell.innerHTML = "Fe";

newCell = newRow.insertCell(1l);
newCell.innerHTML = "Fi";

newCell = newRow.insertCell (2);
newCell.innerHTML = "Fo";

newCell = newRow.insertCell (3);
newCell.innerHTML = "Fum";

}

</script>

Great—here’s the entire example, editTable.html:

<html>
<head>
<title>
Editing HTML Tables
</title>

<script language="javascript"s>
function createRow ()
var tablel = document.getElementById("tablel");
var newRow = tablel.insertRow(3) ;

var newCell = newRow.insertCell (0) ;
newCell.innerHTML = "Fe";

newCell = newRow.insertCell (1) ;
newCell.innerHTML = "Fi";

newCell = newRow.insertCell (2) ;
newCell.innerHTML = "Fo";

Chapter 8: Handling Dynamic

newRow. insertCell (3) ;
n Fum n ;

newCell =
newCell.innerHTML =
1
</scripts>
</heads>

<body>
<centers>
<hl>
Editing HTML Tables
</hl>

<table id="tablel" border="2">

<tr>
<td>Fe</td>
<td>Fi</td>
<td>Fo</td>
<td>Fum</td>

</tr>

<tr>
<td>Fe</td>
<td>Fi</td>
<td>Fo</td>
<td>Fum</td>

</tr>

<tr>
<td>Fe</td>
<td>Fi</td>
<td>Fo</td>
<td>Fum</td>

</tr>

</table>

<input type="button" value="Add a new row"
onclick="createRow () ">

</centers>
</body>
</html>

HTML with Ajax

You can see this example at work in Figure 8-13, where the table appears in its original

state.

295

296

Ajax: A Beginner's Guide

A Editing HTML Tables - Microsoft Internet Explorer

File Edit View Favorites Tools Help

(}Back A > | E @ .‘j ,OSearch 'f?Favorites 2] [:;v & @ - (- ﬂ [] 3
Address @ http: fflacalhost fchapterdfeditTable, html

v| Go Links **

Editing HTML Tables

FeFiFo [Fum
[FeFi Fo [Fum
[FeFiFo [Fum

Figure 8-13 The original table in editTable.html

(}Back = 0 = E @ .;b ,OSearch j‘? Favorites 42 [;Jv & @ < (- ﬁ [] 3

Address @ http: fflacalhost fchapterdfeditTable, html

A new row appears at the bottom of the table when you click the button, as shown in

Figure 8-14.

Cool, now you know how to edit a table on-the-fly. That’s an exceptionally useful skill

to have for Ajax applications, because you can update a table—and even rewrite it with new
data—without refreshing the page.

A Editing HTML Tables - Microsoft Internet Explorer

File Edit View Favorites Tools Help

v| Go Links **

Editing HTML Tables

FeFi Fo Fum
FeFi Fo [Fum
FeFi Fo [Fum
[FeFiFo [Fum

Figure 8-14 Adding a new row in edifTable.html

Chapter 8: Handling Dynamic HTML with Ajax

Remove Table Rows On-the-Fly

To truly be able to edit HTML tables on-the-fly, you need to know how to remove rows as well
as add them. Try using the deleteRow method to let the user remove a row after the user adds a
new row. Here’s what the code looks like:

<html>
<head>
<title>
Editing HTML Tables
</title>
<script language="javascript"s>
function createRow ()
{
var tablel = document.getElementById("tablel");
var newRow = tablel.insertRow(3) ;
var newCell = newRow.insertCell (0) ;
newCell.innerHTML = "Fe";
newCell = newRow.insertCell (1) ;
newCell.innerHTML = "Fi";
newCell = newRow.insertCell (2) ;
newCell.innerHTML = "Fo";
newCell = newRow.insertCell (3) ;
newCell.innerHTML = "Fum";
}
function removeRow ()
{
var tablel = document.getElementById("tablel");
tablel.deleteRow(3);
}
</script>
</head>
<body>
<centers>
<hl>
Editing HTML Tables
</hl>

<table id="tablel" border="2">
<tr>
<td>Fe</td>

(continued)

297

298 Ajax: A Beginner's Guide

<td>Fi</td>
<td>Fo</td>
<td>Fum</td>

</tr>

<tr>
<td>Fe</td>
<td>Fi</td>
<td>Fo</td>
<td>Fum</td>

</tr>

<trs>
<td>Fe</td>
<td>Fi</td>
<td>Fo</td>
<td>Fum</td>

</tr>

</table>

<input type="button" value="Add a new row"
onclick="createRow () ">

<input type="button" value="Remove the new row"
onclick="removeRow () ">

</centers>
</body>
</html>

Using document.write to Write Documents
to the Browser

Another dynamic HTML method you should know about is the document.write method, which
allows you to write to a web page from JavaScript. Unlike the techniques you have seen earlier
in this chapter, document.write is designed to write entire pages at once, not just update sections
of a page. Using document.write in Ajax applications, you can download and examine data from
the server before writing the web page and, depending on that data, write different web pages.

Here’s an example, restaurant.html, that shows how document.write can respond to current
conditions. In this case, we’ll create for a restaurant a web page that displays a different
menu—breakfast, lunch, or dinner—depending on the time of day. This web page will be
entirely written from JavaScript, so it has an empty <body> element:

<body>
</body>

Chapter 8: Handling Dynamic HTML with Ajox 299

In the <script> element, we first determine what the current hour of the day is by creating
a JavaScript Date object and using its getHours method:

<script language="JavaScript'"s>
var currentDate = new Date();
var currentHour = currentDate.getHours() ;

</script>

Next, we can write a header welcoming people to the restaurant (‘“Welcome to Our
Restaurant”) using document.write:

<script language="JavaScript"s>
var currentDate = new Date() ;
var currentHour = currentDate.getHours () ;
document.write("<center>");
document.write("<hl>");
document.write ("Welcome to Our Restaurant");
document.write("</hl>");
document.write("</center>");

</scripts>

That’s how it works—you use document.write to write to the web page. You can check
what the hour of the day is, and write the web page to match. For example, if the restaurant is
currently closed, you can write the web page to reflect that:

<script language="JavaScript"s>
var currentDate = new Date() ;
var currentHour = currentDate.getHours () ;
document .write("<center>") ;
document .write("<hl>");
document .write ("Welcome to Our Restaurant") ;
(
(

document .write("</hl>");
document .write("</centers") ;
if (currentHour < 5 || currentHour > 23){

document.write("<center>");

document.write("<hl>");

document.write("Sorry, we are currently closed.");
document.write("</hl>");

document.write("</center>");

</scripts>

300 Ajox: A Beginner's Guide

Or, if it’s breakfast time, you can display the breakfast menu in, say, an HTML table:

<script language="JavaScript"s>
var currentDate = new Date() ;
var currentHour = currentDate.getHours() ;

document .write("<center>") ;
document .write("<hl>");
document .write ("Welcome to Our Restaurant") ;
document .write("</hl>");
document .write("</center>") ;
if (currentHour < 5 || currentHour > 23)
document .write("<center>") ;
document .write("<hl>");
document .write("Sorry, we are currently closed.");
document .write("</hl>");
document .write("</centers>") ;

}

if (currentHour > 6 && currentHour < 12) {

document.write("<center>");
document.write (

"<h2><i>We're now serving breakfast!</i></h2>");
document.write("<table border bgcolor='aqua'>");
document.write (

"<tr><th colspan = 2>Our Breakfast Menu</th></tr>");
document.write (

"<tr><td>Fried Eggs</td><td>$3.50</td></tr>");
document.write (

"<tr><td>Boiled eggs</td><td>$3.00</td></tr>");
document.write (

"<tr><td>Waffles</td><td>$2.00</td></tr>");
document.write ("<tr><td>Gruel</td><td>$2.50</td></tr>");
document.write (

"<tr><td>Spinach</td><td>$2.50</td></tr>");
document.write("</table>");
document.write("</center>");
document.write("</table>");
document.write("</center>");

</scripts>

Chapter 8: Handling Dynamic HTML with Ajax

Here’s the whole document.write example, restaurant.html:

<html>
<head>

<script language="JavaScript"s
var currentDate = new Date() ;
var currentHour = currentDate.getHours() ;
document .write("<centers>") ;

document .write("<hls>") ;
document .write ("Welcome to Our Restaurant") ;
document .write("</hl>");
document .write("</centers");
if (currentHour < 5 || currentHour > 23){
document .write("<center>") ;
document .write("<hl>") ;
document .write("Sorry, we are currently closed.");
document .write("</hl>");
document .write("</centers") ;
}
if (currentHour > 6 && currentHour < 12) {
document .write("<center>") ;

document .write (

"<h2><i>We're now serving breakfast!</i></h2>");
document .write("<table border bgcolor='aqua's") ;
document .write (

"<tr><th colspan = 2>Our Breakfast Menu</th></trs>");
document .write (

"<tr><td>Fried Eggs</td><td>$3.50</td></tr>");
document .write (

"<tr><td>Boiled eggs</td><td>3$3.00</td></tr>");
document .write (

"<tr><tdsWaffles</td><td>$2.00</td></tr>") ;
document .write ("<tr><td>Gruel</td><td>$2.50</td></tr>") ;
document .write (

"<tr><tds>Spinach</td><td>$2.50</td></tr>") ;

document .write("</tables>");
document .write("</centers") ;
document .write("</tables>");
document .write("</centers") ;
}
if (currentHour >= 12 && currentHour < 17) {
document .write("<center>") ;

document .write (

"<h2><i>We're now serving lunch!</i></h2>");
document .write("<table border bgcolor='aqua's") ;
document .write (

"<tr><th colspan = 2>Our Lunch Menu</th></tr>");

301

302 Ajox: A Beginner's Guide

document .write (

"<tr><td>Ham Sandwich</td><td>$4.50</td></tr>") ;
document .write (

"<tr><tds>Pickle Sandwich</td><td>$4.50</td></tr>");
document .write (

"<tr><td>Peacock Sandwich</td><td>$4.00</td></tr>");
document .write (

"<tr><td>Alligator Nuggets</td><td>$6.00</td></tr>");
document .write (

"<tr><td>Python Salad</td><td>$5.50</td></tr>");
document .write (

"<tr><td>Rattler Soup</td><td>$2.50</td></tr>");
document .write("</table>");

document .write("</centers") ;
if (currentHour >= 17 && currentHour < 22) {
document .write("<centers") ;

document .write (

"<h2><i>We're now serving dinner!</i></h2>");
document .write("<table border bgcolor='aqua's>") ;
document .write (

"<tr><th colspan = 2>Our Dinner Menu</th></tr>");
document .write (

"<tr><td>Filet Mignon</td><td>$9.00</td></tr>");
document .write (

"<tr><tds>Lobster Thermador</td><td>$8.50</td></tr>");
document .write (

"<tr><td>Strip Steak</td><td>$8.00</td></tr>");
document .write (

"<tr><td>Tube Steak</td><td>$4.50</td></tr>");
document .write (

"<tr><td>Baked Potato</td><td>$3.50</td></tr>");
document .write (

"<tr><td>Broiled Potato</td><td>$2.50</td></tr>");
document .write (

"<tr><td>Eggplant Drops</td><td>$2.50</td></tr>");
document .write ("</table>") ;

document .write("</center>");
}
</scripts>
</head>
<body>
</body>

</html>

Chapter 8: Handling Dynamic HTML with Ajax 303

A http:/localhost/chapter8/restaurant. htm?v=6 - Microsoft Internet Explorer

File Edit View Favorites Tools Help
Qback ~ O - ¥ A | Poearch rFavartes 8 | D- & W - L @& @ 3

Address @ http: fflocalhostfchapterdirestaurant, html?e=6 V| Go Links **

Welcome to Our Restaurant

We're now serving lunch!

| Ouwr Lunch Menu

Ham Sandwich $4.50
Pickle Sandwich $4.50
Peacock Sandwich $4.00
|AJ]igator Huggets |$6. oo}
Python Salad 5550
|Rattler Soup |$2.50

@ Daone 'ﬂ Local intranet:

Figure 8-15 A restaurant menu that depends on the time of day

You can see in Figure 8-15 restaurant.html at work, where it’s reporting the lunch menu.
Here’s the key about document.write: it really is only for writing whole pages at once;
there’s no way to write just to a specific section of the page. When you use document.write, it
“opens” a web page for writing, and when that web page is displayed, it’s “closed” for writing.
If you attempt to use document.write on a closed web page, that page is opened again—which
means it’s erased and blanked. That’s fine if you want to rewrite the whole page, but it’s not

good if you just want to update data in a specific section of that page.

This page intentionally left blank

Chapter 9

Introducing PHP
with Ajax

305

306 Ajox: A Beginner's Guide

Key Skills & Concepts

Mixing PHP with HTML
Echoing text to the browser
Working with variables
Working with arrays

Using if statements

Using for loops

Using while loops

Using foreach loops

You can use Ajax to download static text and XML files from the server, of course, but
there’s not really much advantage to doing so. If your data doesn’t change, why not just
store it in your web page to start with? The true power of Ajax comes when your web page
interacts with the server, and the server can send data that varies. That’s why Ajax is usually
used with some programming language that runs on the server—and the most common server-
side language used with Ajax today is PHP.
For that reason, this and the following two chapters concentrate on introducing PHP as
it relates to Ajax. You’ll get a good working knowledge of PHP in these chapters, enough to
provide a solid foundation for nearly any Ajax work you want to do.

Getting Started with PHP

To run PHP, you have to have a server that supports it. You can seek out an Internet service
provider (ISP) that hosts PHP, or you can install it yourself from www.php.net/. To run PHP
code, you have to give your file on the server the extension .php (and bear in mind that if
you’re using WordPad, you should enclose the filename in quotation marks when you save it,
so that WordPad doesn’t add the extension .txt to your file).

Inside the file, you can enclose PHP code between the markup <?php and ?7>:

<?php
[Put your PHP code here]

?>

www.php.net/

Chapter 9 Introducing PHP with Ajax 307

Then, when you access the file on the server via a web browser, the server sees that the file
has the extension .php and checks to see if there’s any PHP code in it. If the server finds PHP
code, it runs that code, which can send results back to the browser.

Here’s an example that runs the PHP built-in function phpinfo, which displays an HTML
table of data about the version of PHP the server is running. This example will be named
phpinfo.php.

We can also include HTML in PHP files, and in phpinfo.php, we want to send a web page
back to the browser, so let’s start with some HTML:

<html>
<head>
<title>
Running phpinfo
</title>
</head>

<body>
<hl>
Running phpinfo
</hl>

</body>
</html>

Now we can add the PHP markup that tells the server that there’s PHP code to be run:

<html>
<head>
<title>
Running phpinfo
</title>
</head>
<body>
<hl>
Running phpinfo
</hl>
<?php
?>
</body>

</html>

308 Ajax: A Beginner's Guide

In this case, the only PHP we’ll run is the phpinfo function, which will display an HTML
table:

<html>
<head>
<title>
Running phpinfo
</title>
</head>

<body>
<hl>
Running phpinfo
</hl>
<?php
phpinfo () ;
?>
</body>
</html>

As you can see in Figure 9-1, the phpinfo function did indeed run, and the results appear in
the figure. Not bad—our first PHP example in this chapter has run successfully.

2} Running phpinto - Microsoft Internet kxplorer
Hle Edt ¥ew Favontes ook Help

Qbxk ~ @ - [2 @ Poeach iFavorites @ | - % W - | /@ @ 3
nﬂdm«@utp:mocalrmd;d.apterwphpinro.php VB ks ?

Running phpinfo

[system Windaws NT DMB400 5.1 build 2600

Build Dale Nuv 2 2006 11.50.55

Configure Command cocript/nalogo configurejs® enable snapshot build® " with gd=sharcd®

Server API CGlFasiCol

\Virtual Directory Support ‘enabled

Configuration File (php.ini) CAPragram FilesiPHPiphp.ini

Path

PIIP API 20041225

PHP Extension 20060613

Zend Extension 220060519

Debug Bulld no

Thread Safety cnabled

7enid Memary Manager rnahled ~
& il | |
@] Done 89 Locl intranct

Figure 9-1 Running the phpinfo function

Chapter 9 Introducing PHP with Ajax 309

Returning Text to the Browser

Of course, running PHP scripts on the server wouldn’t be much use unless you could send data
back to the browser, where your Ajax application can make use of that data in JavaScript. In
PHP, the primary function that sends data back to the browser is the echo function.

Here’s an example, echo.php, that puts this function to work. We’ll start echo.php with
some HTML.:

<html>
<head>
<title>
Echoing text
</title>
</heads>

<body>
<hls>
Echoing text
</hl>

</body>
</html>

Next, we’ll add a call to the echo function in a PHP block—we only have to pass the echo
function the text we want to send back to the browser (echo.php):

<html>
<head>
<title>
Echoing text
</titles>
</heads>

<body>
<hl>
Echoing text
</hl>
<?php
echo ("Hello from PHP.");
?>
</body>
</html>

You can see the results in Figure 9-2, where the text we sent back to the browser does
appear in the browser. Nice.

310 Ajox: A Beginner's Guide

‘A Echoing text - Microsoft Internet Explorer

File Edit View Favorites Tools Help

Qo - Q"N A G

O Search <7 Favorites 42 - =N |£—| R @3

Address @ http: fflocalhostfchapterdfecho.php

v| Go Links **

Echoing text

Hello from PHE.

Figure 9-2 Using the echo function

Send HTML to the Browser

Besides simple text, you can also send HTML back to the browser using the echo function. Try
this: make the message in echo.php appear in the browser in bold, italic font using the HTML

tags and <i>.
Here’s what that would look like in code:

<html>
<head>
<title>

Echoing text
</title>
</head>

<body>
<hl>
Echoing text
</hl>
<?php

echo ("<i>Hello from PHP.</i>");
?>
</body>
</html>

Now how about sending XML back to the browser?

Chapter 9 Introducing PHP with Ajax 311

Returning XML to the Browser

It’s easier to send simple text back to the browser, but after all, the x in Ajax stands for XML.
Let’s take a look at how to send XML back to the browser from a PHP script with a new
example, xml.php.

Let’s say that we want to send this XML document to the browser:

<?xml version="1.0" ?>
<document >

<item>Raspberry</item>
<item>Strawberry</items>
<item>Blueberry</item>
<item>Tomato</item>

</document >

Because this is XML, we can’t send any HTML back to the browser, so this example will
be all PHP, no HTML.:

<?php

We start by setting the header that the server sends to the browser to a Content-Type header
set to “text/xml,” which tells the browser that this document is XML (the default, if you don’t
set this header, is HTML):

<?php
header ('Content-Type: text/xml');

Every (legal) XML document starts with an XML declaration:

<?xml version="1.0" ?>
<document >

<item>Raspberry</item>

<item>Strawberry</item>

312

Ajax: A Beginner's Guide

Ask the Expert

Q:
A:

e

Why did we set the Content-Type header to “text/xml”?

To send XML back to the browser, you tell the browser what that data’s format is by
setting the Content-Type header to the MIME (Multipurpose Internet Mail Extensions)
type “text/xml.”

Who sets the MIME types of data formats, and what other types are available?

Data formats are named and given MIME types by the Internet Assigned Numbers
Authority (IANA). You can find all the MIME types available at www.iana.org/
assignments/media-types/. Examples include “text/rtf” for Rich Text Format text and
text/html for HTML, the default for web servers.

<item>Blueberry</item>
<item>Tomato</item>

</document >

We can echo such a declaration to the browser like this:

<?php

header ('Content-Type: text/xml') ;
echo '<?xml version="1.0" ?>';

Next, we’ll send the opening tag of the document element, just named <document>, back

to the browser:

<?xml version="1.0" ?>
<document>

<item>Raspberry</item>
<item>Strawberry</item>
<item>Blueberry</item>
<item>Tomato</item>

</document >

www.iana.org/assignments/media-types/
www.iana.org/assignments/media-types/

Chapter 9: Introducing PHP with Ajax 313

Here’s what that looks like in xml.php:
<?php

header ('Content-Type: text/xml');
echo '<?xml version="1.0" ?>';

echo '<document>';

Next come the actual XML <item> elements:

<?xml version="1.0" ?>
<document >

<item>Raspberry</item>
<item>Strawberry</item>
<item>Blueberry</item>
<item>Tomato</item>

</document >

These XML <item> elements look like this in xml.php:

<?php
header ('Content-Type: text/xml') ;
echo '<?xml version="1.0" ?>';

echo '<documents>';

echo '<item>';
echo 'Raspberry';
echo '</item>';

echo '<item>';
echo 'Strawberry’';
echo '</item>';

echo '<item>';
echo 'Blueberry’';
echo '</item>';

echo '<item>';
echo 'Tomato';
echo '</item>';

314 Ajox: A Beginner's Guide

We end by closing the <document> element:

<?php
header ('Content-Type: text/xml');
echo '<?xml version="1.0" ?>';

echo '<documents>';

echo '<item>';
echo 'Raspberry';
echo '</items>';

echo '<item>';
echo 'Strawberry';
echo '</items>';

echo '<item>';
echo 'Blueberry';
echo '</items>';

echo '<item>';
echo 'Tomato';

echo '</item>';

echo '</document>';
?>

Excellent—now we’ve created and returned XML from a PHP script (see Figure 9-3).

A http:Hlocalhost/chapter9/xml. php?b=6 - Microsoft Internet Explorer

File Edit View Favorites Tools Help .wt.'
Qback - O - ¥ A 0| Poearch TrFavartes 8 | @- & W - L @& @ 3
Address | http: fflocalhostfchapterdf=ml.php V| Go Links **

=7uml version="1.0" 7>
- =document:>
<zitem=Raspberry</item:
zitem=Strawberry</item:
<zitem=Blueberry</item:
<item=Tomato</item:=
</documents

Figure 9-3 Viewing the XML sent from xml.php

Chapter 9: Introducing PHP with Ajax 315

Adding Comments to Your PHP Code

Comments are annotations that you can add to a program to make it more human-readable.
Comments are ignored by the server, but they help you explain to other people (or yourself)
what your program does.

There are three types of comments in PHP. The first type is a single-line comment, which
begins with // and tells PHP not to read anything else for the remainder of the current line.
Here’s an example:

<?php
header ('Content-Type: text/xml') ;
echo '<?xml version="1.0" ?>';

//Print the document element
echo '<documents>';

//Print the elements
echo '<item>';

echo 'Raspberry';
echo '</item>';

echo '<item>';
echo 'Strawberry'; //Strawberries are good!
echo '</item>';

echo '<item>';
echo 'Blueberry';
echo '</item>';

echo '<item>';
echo 'Tomato';
echo '</item>';

echo '</documents>';
?>

Note that each comment doesn’t have to have its own line; you can place a comment at the
end of the line, as with the comment about strawberries above.

The second type of PHP comment is also a single-line comment, but it starts with the sharp
symbol (#) instead of //:

<?php
header ('Content-Type: text/xml') ;
echo '<?xml version="1.0" ?>';

#Print the document element
echo '<documents>';

316 Ajax: A Beginner's Guide

#Print the elements
echo '<item>';

echo 'Raspberry';
echo '</items>';

echo '<item>';
echo 'Strawberry'; #Strawberries are good!
echo '</item>';

echo '<item>';
echo 'Blueberry';
echo '</items>';

echo '<item>';
echo 'Tomato';
echo '</items>';

echo '</documents>';
?>

Besides these two types of single-line comments, PHP also supports mutliline comments
with the markup /* (which starts the comment) and */ (which ends the comment). All the text
between /* and */ is ignored by PHP. Here’s what our single-line comments look like when
converted to multiline comments:

<?php
header ('Content-Type: text/xml');
echo '<?xml version="1.0" ?>';

/* Print the
document

element */

echo '<documents>';

/* Print

the

elements */

echo '<item>';
echo 'Raspberry';
echo '</item>';

echo '<item>';

/* Strawberries are good! */
echo 'Strawberry';

echo '</item>';

echo '<item>';
echo 'Blueberry';
echo '</items>';

Chapter 9 Introducing PHP with Ajax 317

echo '<item>';
echo 'Tomato';
echo '</items>';

echo '</documents>';

Storing Data in Variables

As you know, variables are placeholders in memory for data, and using variables in PHP is as
easy as using them in JavaScript. In PHP, variable names begin with a dollar sign, like this:
$numberOfBooks or $moneyOwedToMe. As in JavaScript, you can use variables in PHP to
store numbers or text strings.

Storing Numbers in Variables

Here’s an example, variables.html, showing how to store numbers. This example will keep
track of a number of apples, and starts by storing two apples in a variable named $apples, like
this:

<html>
<head>
<title>
Storing numbers in variables
</title>
</heads>
<body>
<hls>
Storing numbers in variables
</hl>
<?php
echo "I'm setting the number of apples to 2...
";
Sapples = 2;
?>
</body>

</html>

318 Ajox: A Beginner's Guide

Now $apples holds 2, as you can verify by displaying its contents in the browser using the
echo statement:

<html>
<head>
<titles
Storing numbers in variables
</title>
</head>
<body>
<hls>
Storing numbers in variables
</hl>
<?php
echo "I'm setting the number of apples to 2...
";
Sapples = 2;
echo "The current number of apples is ", $apples, ".
";
?>
</body>
</html>

Note how this works: you can echo a variety of items back to the browser if you separate
those items with commas. Now you can add three more apples to the total, and echo the new

total (variables.php):

<html>
<head>
<title>
Storing numbers in variables
</title>
</head>

<body>
<hl>
Storing numbers in variables
</hl>

Chapter 9 Introducing PHP with Ajax 319

<?php
echo "I'm setting the number of apples to 2...
";

Sapples = 2;

echo "The current number of apples is ", Sapples, ".
";
echo "Now I'm adding three more apples...
";

$apples = $apples + 3;

echo "The number of apples I have now is ", $apples, "
";
?>

</body>
</html>
That’s all you need to do—you can see the results in Figure 9-4.
Storing Text Strings in Variables
Besides numbers, you can also store strings in PHP variables, as in this example:
Sname = "Eythmoid Studge, Jr.";

In JavaScript, you can concatenate (that is, assemble) strings using the + operator, but in
PHP, you use the dot (.) operator:

Sname = "Eythmoid" . " Studge," . " Jr.";

A Storing numbers in variables - Microsoft Internet Explorer,

File Edit View Favorites Tools Help
Qiack -~ O - ¥ A | Poearch rFavartes 8 | - 2 B LB @ 3
Address @ http: fflacalhostfchapterdfvariables, php V| Go Links **

Storing numbers in variables

T'm setting the number of apples to 2.
The current number of apples 12 2.
MNewr I'm adding three more apples..
The mumber of apples I have nowis 5

Figure 9-4 Using variables in variables.php

320 Ajox: A Beginner's Guide

You can also use the many built-in string functions in PHP to work with strings. For
example, the strtoupper function converts text to uppercase letters. The statement

Sname = strtoupper ("Eythmoid Studge, Jr.");

would leave "EYTHMOID STUDGE, JR." in $name.
The next example, string.php, uses the following popular string functions to get you started
working with strings in PHP:

trim Trims spaces from the beginning and end of a string

substr Extracts substrings from a string

strlen Returns the length of a string

substr_replace Replaces text in a string

strtoupper Converts a whole string to uppercase letters

We’ll start off with the string " Good old PHP!", which has leading spaces, and use

the trim function to trim off those spaces—this is a great function, because users often type
leading or trailing spaces that you want to get rid of:

<html>
<head>
<title>
Working with PHP strings
</title>
</head>
<body>
<hls>
Working With PHP strings
</hl>
<?php
echo trim(" Good old PHP!"), "
";
?>
</body>

</html>

Chapter @: Infroducing PHP with Ajax

Next, we’ll use the substr function to extract a substring from a string. You pass this
function the string you start with, the (0-based) position in the string at which to start the
substring, and the length of the substring. For example, to extract “PHP” from “Good old
PHP!”, we would do this:

<?php
echo trim(" Good old PHP!"), "
";

echo substr("Good old PHP!", 9, 3), "
";

?>

You can check the length of a string with the strlen function, which returns the length of
the string you pass to it, in characters:

<?php
echo trim(" Good old PHP!"), '"
";
echo substr("Good old PHP!", 9, 3), "
";
echo "'PHP' starts at position ", strpos("Good old PHP!",
n PHP") s ||
u ;

echo "'Good old PHP!' is ", strlen("Good old PHP!"), "
characters long.
";

?>

You can also replace a substring in a string with another substring, using the substr_
replace function. You pass this function the string you want to edit, the new string to insert,
the location at which you want to insert the new string in the old string, and the number of
characters you want to replace. Here’s how we might convert “Good old PHP!” to “Great old
PHP!” using substr_replace:

<?php
echo trim(" Good old PHP!"), "
";
echo substr ("Good old PHP!", 9, 3), "
";
echo "'PHP' starts at position ", strpos("Good old PHP!",
IIPHPH) , n
||;
echo "'Good old PHP!' is ", strlen("Good old PHP!"), "

characters long.
";

321

322 Ajax: A Beginner's Guide

echo substr replace("Good old PHP!", "Great", 0, 4), "
";

?>

Finally, we use the strtoupper function to convert “Good old PHP!” to all uppercase letters:
<?php
echo trim(" Good old PHP!"), "
";

echo substr ("Good old PHP!", 9, 3), "
";

echo "'PHP' starts at position ", strpos("Good old PHP!",
"PHP") , Il
ll ;

echo "'Good old PHP!' is ", strlen("Good old PHP!"), "
characters long.
";

echo substr replace("Good old PHP!", "Great", 0, 4), "
";

echo strtoupper ("Good old PHP!"), "
";
?>

You can see this example, string.php, at work in Figure 9-5.
Many string functions are available in PHP, and you can find a sample in Table 9-1.

‘2 Working with PHP strings - Microsoft Internet Explorer,

File Edit View Favorites Tools Help '1.
Qiack ~ O - ¥ A 0| Poearch Trravartes 8 | D- & W - L @B @ 3
Address @ http: fflocalhost fchapterdstring. php V| Go

Working with PHP strings

Good old PHP!

PHP

THE' starts at posttion 9

'Good old PHPI' 15 13 characters long,
Great old PHP!

GOOD OLD FHP!

Links **

Figure 9-5 Using string functions in string.php

Function

Chapter @: Infroducing PHP with Ajax

Description

addcslashes

Quotes a string with slashes

addslashes Quotes a string with slashes

bin2hex Converts binary data into hexadecimal representation
chop Aliias of the rtrim function

chr Returns a specific character given its ASCIl code
chunk_split Splits a string into smaller chunks

convert_cyr_string

Converts from one Cyrillic character set to another

count_chars

Returns information about characters in a string

crc32 Calculates the crc32 polynomial of a string
crypt Supports one-way string encryption (hashing)
echo Displays one or more strings

explode Splits a string on a substring

forintf Writes a formatted string to a stream

get_html_translation_table

Returns the translation table

hebrev

Converts Hebrew text to visual text

hebrevc

Converts logical Hebrew text to visual text

html_entity_decode

Converts all HTML entities to their applicable characters

htmlentities

Converts all applicable characters to HTML entities

htmlspecialchars

Converts special characters o HTML entities

implode Joins array elements with a string

join Aliias of the implode function

levenshtein Calculates the Levenshtein distance between two strings
localeconv Gets the numeric formatting information

ltrim Strips whitespace from the beginning of a string

md5 Calculates the MD5 hash of a string

md5_file Calculates the MD5 hash of a given filename
metaphone Calculates the metaphone key of a string

money_Format

Formats a number as a currency string

nl_langinfo

Queries language and locale information

nl2br

Inserts HTML line breaks before all newlines in a string

number_format

Table 9-1

Formats a number with grouped thousands separators

The String Functions
(continued)

323

324 Ajox: A Beginner's Guide

Function Description

ord Returns the ASCII value of a character

parse_str Parses a string info variables

print Displays a string

printf Displays a formatted string
quoted_printable_decode Converts a quoted-printable string to an 8-bit string
quotemeta Quotes metacharacters

rtrim Strips whitespace from the end of a string

setlocale Sets locale information

shal Calculates the SHAT hash of a string

shal_file Calculates the SHA1 hash of a file

similar_text Calculates the similarity between two strings
soundex Calculates the soundex key of a string

sprintf Returns a formatted string

sscanf Parses input from a string according to a format
str_ireplace Case-insensitive version of the str_replace function
str_pad Pads a string with another string

str_repeat Repeats a string

str_replace Replaces all occurrences of the search string with the replacement string
str_rot13 Performs the rot13 transform on a string

str_shuffle Shuffles a string randomly

str_split Converts a string to an array

str_word_count Returns information about words used in a string
strcasecmp Performs a binary case-insensitive string comparison
strchr Alias of the strstr function

stremp Performs a binary-safe string comparison

strcoll Performs a locale-based string comparison

strcspn Finds the length of the initial segment not matching a mask
strip_tags Strips HTML and PHP tags from a string

stripcslashes Unquotes string quoted with addcslashes()

stripos Finds position of first occurrence of a case-insensitive string
stripslashes Unquotes string quoted with addslashes()

Table 9-1 The String Functions (continued)

Chapter @: Infroducing PHP with Ajax

Function Description

stristr Case-insensitive version of the strstr function

strlen Gets a string’s length

strnatcasecmp Performs a case-insensitive string comparison

strnatcmp Performs a string comparison using a “natural order” algorithm

strncasecmp Performs a binary case-insensitive string comparison of the first n
characters

strncmp Performs a binary-safe string comparison of the first n characters

strpos Finds the position of first occurrence of a string

strrchr Finds the last occurrence of a character in a string

strrev Reverses a string

strripos Finds the position of last occurrence of a case-insensitive string

strrpos Finds the position of last occurrence of a character in a string

strspn Finds the length of initial segment matching mask

strstr Finds the first occurrence of a string

striok Tokenizes a string

strtolower Converts a string to lowercase

strioupper Converts a string fo uppercase

strir Translates certain characters

substr Returns part of a string

substr_compare

Performs a binary-safe (optionally case-insensitive) comparison of two
strings from an offset

substr_count

Counts the number of substring occurrences

substr_replace

Replaces text within part of a string

trim Strips whitespace from the beginning and end of a string
ucfirst Makes a string’s first character uppercase
ucwords Makes the first character of each word in a string uppercase
vprintf Outputs a formatted string
vsprintf Returns a formatted string
wordwrdp Wraps a string to a given number of characters

Table 9-1 The String Functions (continued)

Another thing that you can do with variables in PHP is interpolate them into strings, as

discussed next.

325

326 Ajox: A Beginner's Guide

Interpolating Variables into Text Strings

Interpolating variables into text strings means having PHP substitute a variable’s value for the
name of a variable in a text string. For example, if you have two apples in a variable named
$apples, you can display that fact with the echo statement like this:

Sapples = 2;
echo "I have " . Sapples . " apples.";

But PHP also allows you to use the following shortcut, where you can simply place a
variable in a text string, and the variable’s name will be replaced with the value in the variable:

Sapples = 2;
echo "I have Sapples apples.";

Variable interpolation happens when you use double quotation (not single!) marks to
surround a text string. In such strings, the name of each variable will be replaced by its value.
For example, here’s what our earlier example variables.php looks like if you use interpolation
instead (this is interpolation.php):

<head>
<titles
Interpolating variables in strings
</title>
</heads>
<body>
<hl>
Interpolating variables in strings
</hl>
<?php
echo "I'm setting the number of apples to 2...
";
Sapples = 2;

echo "The current number of apples is $apples.
";
echo "Now I'm adding three more apples...
";
Sapples = Sapples + 3;

echo "The number of apples I have now is S$apples.
";
?>

</body>

</html>

You can see interpolation.php at work in Figure 9-6. Cool.

Chapter @: Infroducing PHP with Ajax

& | Interpolating variables in strings - Microsoft Internet Explorer.

File Edit View Favorites Tools Help

Qback ~ & - ¥ A | Poearch rravartes @ | 2- % Ml - 8 @ 3

Address @ http: fflocalhost fchapterdfinterpolation. php V| Go Links **

Interpolating variables in strings

T'm setting the number of apples to 2.
The current number of apples 12 2.
MNewr I'm adding three more apples..
The mumber of apples I have now s 5.

Figure 9-6 Interpolating variables into text strings

But here’s a question: can you run a variable name into other text? For example, what if

you want to display “I have a hotdog.”? You could start by storing the “hot” in “hotdog” in a
variable named $data:

<?
$data = "hot";

?>

Then, could you put together the word “hotdog” using $data? Would that look like this?

<?
S$data = "hot";

echo "I have a $datadog.
";
?>

It turns out that this won’t work—PHP will want to know what this new variable named
$datadog is. Instead, you can surround the name of the variable (but not the leading $) in curly
braces to make interpolation work in this case:

<?

$data = "hot";

echo "I have a ${data}dog.
";
?>

327

328 Ajox: A Beginner's Guide

And that’s how to interpolate variables when those variables run up against other
nonwhitespace characters in your text string. If you don’t want a variable to be interpolated,
put a backslash (\) in front of it:

echo "I have \Sapples.";

This will display “I have $apples.”

Handling Data in PHP Arrays

The next step up in handling data from variables is arrays, and arrays work in PHP much as
they do in JavaScript.

Here’s an example, arrays.php, that gives you the fundamentals of working with arrays. In
PHP, you can create an array simply by referring to it. Here’s how we create an array named
$fruit (like other variables, array names in PHP begin with a $) and assign $fruit[0] the string
"apples" (as in JavaScript, arrays in PHP are 0-based):

<?php
$fruit [0] = "apples";

?>

We can add other items to the array as well:

<?php
Sfruit [0] = "apples";
$fruit[1l] = "oranges";
$fruit[2] = "pomegranates";
}

?>

We can overwrite elements in the array simply by assigning another value to that element,
like this, where we’re overwriting $fruit[2]:

<?php
Sfruit [0] = "apples";
Sfruit[1] = "oranges";
Sfruit[2] = "pomegranates";
$fruit[2] = "watermelons";

?>

Chapter 9 Introducing PHP with Ajax 329

In fact, there’s a shortcut in PHP to add another element to the end of an array—you can
simply omit the index inside the square braces, [and]. For example, here’s how we create
$fruit[3] and set it to "kumquats":

<?php
Sfruit [0] = "apples";
Sfruit[1] = "oranges";
Sfruit[2] = "pomegranates";
sfruit[2] = "watermelons";
$fruit[] = "kumquats";

?>

Okay, let’s print out the array elements in a for loop, which works just like for loops in
JavaScript. In PHP, we can determine the number of elements in an array by passing the array
to the PHP count function, which returns the number of elements in the array; so, we can loop
over all those elements this way:

<?php
Sfruit [0] = "apples";
Sfruit[1] = "oranges";
Sfruit[2] = "pomegranates";
Sfruit[2] = "watermelons";
Sfruit([] = "kumquats";

for ($loopIndex = 0; $loopIndex < count($fruit);
$loopIndex++) {

?>
And here’s how we display in the browser each element in the array in arrays.php:

<html>
<head>
<titles
Creating PHP Arrays
</title>
</head>

330 Ajox: A Beginner's Guide

<body>

<hl>
Creating PHP Arrays

</hl>

<?php
Sfruit [0] = "apples";
Sfruit[1] = "oranges";
Sfruit[2] = "pomegranates";
Sfruit[2] = "watermelons";
Sfruit[] = "kumquats";
for ($loopIndex = 0; $loopIndex < count (S$Sfruit);

$loopIndex++) {
echo "\$fruit[$loopIndex] = $fruitl[$loopIndex]
";

?>
</body>
</html>

You can see this example at work in Figure 9-7.
You can also use words as array indexes in PHP, like this:

Sarray["fruit"] = "apples";

A Creating PHP Arrays - Microsoft Internet Explorer

File Edit View Favorites Tools Help .-
Qback ~ O - ¥ A | Poearch TrFavartes 8 | D- & W - L @B @ 3
Address @ http: fflocalhostfchapterfarrays. php V| Go Links **
Creating PHP Arrays

Ffuit[0] = apples

Bfruit[1] = oranges

Ffuit[2] = watermelons

Ffuit[3] = kumaquats

Figure 9-7 Working with arrays

Chapter 9:

Handling Data with Operators

Just like JavaScript, PHP has a bunch of built-in operators, and here they are, in order of

precedence (that is, operators higher up in this list are executed before lower-down operators

when used together in the same statement):

new

[
P~ -

*1 %

== =

= 4= = k= /: = %: &: |: A= <K= >>=

Here’s an example, operators.php, that puts some operators to work in PHP—specifically,

+,—, * and /:

<htmls>
<heads>
<tit

</ti
</head>

<body>
<hl>

</h1l

le>

Using PHP Operators

tle>

Using PHP Operators

>

<?php

?>
</body>
</html>

echo

echo

echo

echo

"12 + 3

"2 - 3

"12 * 3

"2 / 3

12

12

12

12

"
";

"
";

"
";

"
";

Infroducing PHP with Ajax

331

332

Ajax: A Beginner's Guide

& | Using PHP Operators - Microsoft Internet Explorer

File Edit View Favorites Tools Help .-
Qiack - & - ¥ A (| Poearch rFavartes 8 | @- & W - L @& @ 3
Address @ http: fflocalhostfchapterdjoperators, php V| Go Links **
Using PHP Operators

12+3=15

12-3=9

12*3=36

12/3=4

Figure 9-8 Working with PHP operators

The results, shown in Figure 9-8, are the same as you’d expect, based on your knowledge
of JavaScript.

Branching with the if Statement

The PHP if statement looks just like the version in JavaScript, except for the addition of
optional elseif clauses. Formally, this is what the if statement looks like in PHP (note that

statement can be a compound statement made up of several lines enclosed in curly braces,
{ and }):

if (condition)
statement

[elseif (condition)
statement]

[elseif (condition)
statement]
else
statement

You already know from your knowledge of JavaScript how the if and else keywords
work. The elseif keyword in PHP allows you to test additional conditions and execute code if
they’re true. Here’s an example, elseif.php, that shows how to compare a variable to multiple
conditions and execute code corresponding to the first condition that evaluates to true:

Chapter 9:
<html>
<head>
<title>
Using elseif in PHP
</title>
</head>
<body>
<hl>
Using elseif in PHP
</hl>
<?
$temperature = 87;
if ($temperature < 80){
echo "Temperature is OK.";
}
elseif ($temperature < 85) {
echo "Pretty warm.";
}
elseif ($temperature < 90) {
echo "Pretty hot.";
}
else {
echo "Too hot!";
}
?>
</body>
</html>

You can see the results in Figure 9-9—pretty hot!

Infroducing PHP with Ajax

Just as in JavaScript, you can use comparison operators like < and > as well as logical

operators like && (the And operator) to express your conditions in code. For example, this if

statement checks if the temperature is between 65 and 85, inclusive:

<?
$temperature = 70;

if (($temperature >= 65) && ($temperature <= 85){

echo "In the comfort zone.";

}

?>

The PHP comparison operators are summarized in Table 9-2, and the logical operators are

summarized in Table 9-3.

333

334

Ajax: A Beginner's Guide

‘A Using elseif in PHP - Microsoft Internet Explorer

File Edit View Favorites Tools Help

QBack ~) - ¥ [(» | S search o Favorites &)

B-% #H-Uid @3

Address @ http: fflocalhostfchapterafelseif, php

Links **

v|G0

Using elseif in PHP

Pretty hot.

Figure 9-9 Working with the elseif keyword

Operator Operation Example Result
== Equal $a==$b True if $a is equal to $b
=== Identical $a===$b True if $a is equal to $b, and they are of the
same type
I= Not equal $al=$b True if $a is not equal to $b
<> Not equal $a<>$b True if $a is not equal to $b
l== Not identical $a l==$b True if $a is not equal to $b, or they are not
of the same type
< Less than $a < $b True if $a is less than $b
> Greater than $a>$b True if $a is greater than $b
<= Less than or $a <=$b True if $a is less than or equal to $b
equal to
>= Greater than or $a>=$b True if $a is greater than or equal to $b
equal fo
Table 9-2 The Comparison Operators
Operator Operation Example Result
and And $a and $b True if both $a and $b are TRUE
or Or $aor $b True if either $a or $b is TRUE
xor Xor $a xor $b True if either $a or $b is TRUE, but not both
! Not I $a True if $a is not TRUE
&& And $a && $b True if both $a and $b are TRUE
[Or $a |l $b True if either $a or $b is TRUE
Table 9-3 The Logical Operators

Chapter 9: Introducing PHP with Ajax 335

Using for Loops in PHP

The for loop, which repeatedly executes a statement, looks like this in PHP:

for (expressionl; expression2; expression3)
statement

Here, as in JavaScript, expressionl lets you initialize your loop, often by initializing a loop
counter, also called a loop index, that tracks how many times the loop has executed. The next
expression, expression2, is the test expression—the loop keeps going while this expression
remains true. You usually test the value in your loop counter here. The final expression,
expression3, is executed after statement is executed, each time through the loop. You usually
increment your loop counter variable in that expression. Every time through the loop,
statement, which can be a compound statement consisting of many single statements enclosed
in curly braces, is executed.

Here’s an example for loop, in for.php, which prints out “I’'m going to print this ten times.”
ten times:

<html>
<head>
<title>
Using the PHP for Loop
</title>
</head>

<body>
<hl>
Using the PHP for Loop
</hl>

<?php
for ($loopIndex = 0; $loopIndex < 10; $1oopIndex++){
echo "I'm going to print this ten times.
";

}

?>
</body>
</html>

And you can see the results in Figure 9-10. Nice.

Looping with the while Loop

The while loop keeps executing its code while its condition remains true. Here’s what this loop
looks like formally:

while (condition)
statement

336 Ajax: A Beginner's Guide

‘A Using the PHP for Loop - Microsoft Internet Explorer

File Edit View Favorites Tools Help

Qiack ~ O - ¥ A 0| Poearch Trravartes 8 | D- & W - L @B @ 3
Address @ http: fflocalhostfchapteraffor php?f=45 V| Go Links **

Using the PHP for Loop

T'm going to print this ten times.
T'm going to print this ten times.
T'm going to print this ten times.
T'm going to print this ten times.
T'm going to print this ten times.
T'm going to print this ten times.
T'm going to print this ten times.
T'm going to print this ten times.
T'm going to print this ten times.
T'm going to print this ten times.

@ Daone ‘d Local intranet:

Figure 9-10 Working with the for loop

This loop just keeps executing statement (which, of course, can be a compound statement
enclosed in curly braces) until condition becomes false.

Here’s an example, while.php, that keeps displaying the message “I’m going to print this
ELEVEN times.” First, we set up the while loop and a variable to keep track of the number of
times the loop has executed:

<html>
<head>
<titles>
Using a PHP while Loop
</title>
</head>
<body>
<hl>
Using a PHP while Loop
</hl>
<?php

$variable = 0;

while ($variable < 11)({

Chapter 9 Introducing PHP with Ajax 337

?>
</body>
</html>

Now we can add the stuffing in the while loop—the part that echoes the message to the
browser and increments the variable:

<html>
<head>
<title>
Using a PHP while Loop
</titles>
</head>

<body>
<hls>
Using a PHP while Loop
</hl>
<?php
Svariable = 0;

while ($variable < 11){
echo "I'm going to print this ELEVEN times.
";
$variable++;

?>
</body>
</html>

You can see the results in Figure 9-11—this example did indeed print out the message
eleven times. Nice.

Display a Message Multiple Times

Create a PHP example that prints out a message repeatedly for a tenth of a second. You can use
the gettimeofday function to get the current time of day; this function returns an array, and the
predefined sec constant is the index in that array of the seconds value. So, to keep printing out
a message for a tenth of a second, you might do this:

<html>
<head>
<title>

(continued)

338 Ajax: A Beginner's Guide

‘A Using a PHP while Loop - Microsoft Internet Explorer

File Edit View Favorites Tools Help If.'
Qback ~ O - ¥ A (0| Poearch rFavartes 8 | D- & W - @ @ 3
Address @ http: fflacalhost fchapterajwhile, php V| Go Links **

Using a PHP while Loop

T'm going to print this ELEVED times.
T'm going to print this ELEVED times.
T'm going to print this ELEVED times.
I'm going to print this ELEVED times.
T'm going to print this ELEVED times.
I'm going to print this ELEVED times.
T'm going to print this ELEVED times.
T'm going to print this ELEVED times.
T'm going to print this ELEVED times.
T'm going to print this ELEVED times.
T'm going to print this ELEVED times.

@ Done

‘ﬂ Local intranet:

Figure 9-11 Working with the while loop

Using a PHP while Loop

</title>
</head>
<body>
<hls>
Using a PHP while Loop
</hl>
<?php
$time = gettimeofday () ;
$start = S$timel[sec];
$time = gettimeofday () ;
$timeNow = $timel[sec];

while ($timeNow < ($start

$time = gettimeofday();
$timeNow = $time[sec];
echo "I'm going to keep
}
?>
</body>

</html>

+ 0.1)){

going for a tenth of a second!
";

Chapter 9 Introducing PHP with Ajax 339

Looping with the do...while Loop

There’s another version of the while loop—the do...while loop. This loop checks its condition
at the end of the loop, not at the beginning, which means that the loop’s statement is always
executed at least once (and that’s good if that statement sets the condition you want to test to
see if the loop should keep looping). Here’s what this loop looks like formally:

do
statement
while (condition)

You might have noticed that in the previous Try This example, you had to set the
$timeNow variable before starting the while loop—and then again inside the loop every time
through the loop. With a do...while loop, we don’t have to set the $timeNow variable before
starting the loop, because the loop’s condition is checked at the end of the loop instead:

<html>
<head>
<title>
Using a PHP while Loop
</title>
</head>
<body>
<hl>
Using a PHP while Loop
</hl>
<?php
$time = gettimeofday () ;
$start = $timel[sec];
do {
$time = gettimeofday () ;
$timeNow = $timel[sec];
echo "I'm going to keep going for a tenth of a second!
";
} while ($timeNow < ($start + 0.1))
?>
</body>
</html>

Keep in mind that the body of a do...while loop is always executed at least once.

Looping with the foreach Loop

PHP also has a special loop to loop over all the members of data collections like arrays—the
foreach loop. Here’s what it looks like:

foreach (array as Svalue)
statement

340 Ajox: A Beginner's Guide

The foreach loop is a handy one, because each time through the loop, it places the next
element from the array into a variable that you can use inside the body of the loop. Here’s an
example, foreach.php. We start by creating an array of fruits:

<html>
<head>
<title>Using the PHP foreach Loop</titles>
</heads>
<body>
<h1>Using the PHP foreach Loop</hl>
<?php
$array = array("apples", "oranges", "bananas", "cherries");
?>
</body>
</html>

Then we set up a foreach loop that loops over the array, filling a variable we name $fruit
with the current element from the array each time through the loop:

<html>
<head>

<title>Using the PHP foreach Loop</titles>
</heads>

<body>
<h1>Using the PHP foreach Loop</hl>
<?php

Sarray = array("apples", "oranges", "bananas", "cherries");

foreach ($array as $fruit) {

</body>
</html>

Now we’re free to use the $fruit variable in the body of the loop, which we do by printing
it out:

<html>
<head>

<title>Using the PHP foreach Loop</title>
</head>

Chapter @: Infroducing PHP with Ajax

<body>
<h1>Using the PHP foreach Loop</hl>
<?php
Sarray = array("apples", "oranges", "bananas", "cherries");
foreach ($Sarray as $fruit) ({
echo "The current fruit: $fruit
";
}
?>
</body>
</html>

Great—you can see the results in Figure 9-12.

Note that the foreach loop is an exceptionally useful loop for iterating over arrays. With
other loops, you have to set up an array index to iterate through an array (which is hard if your
array uses words as index values), and there’s always the chance that you’ll get the array index
off by one when you set up the loop. The foreach loop avoids that problem by looping over all
the elements of the array automatically, no array index needed.

‘A Using the PHP foreach Loop - Microsoft Internet Explorer, | X
File Edit View Favorites Tools Help 't"
Qiack ~ © - ¥ A (| Poearch rFavartes 8 | D- &] - @& @ 3

Address @ http: fflocalhostfchapterafforeach. php V| Go Links **

Using the PHP foreach Loop

The current fruit: apples

The current fuit: oranges
The current fruit: bananas
The current fruit: cherries

Figure 9-12 Working with the foreach loop

341

This page intentionally left blank

Chapter 10

PHP In Depth

343

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

344 Ajox: A Beginner's Guide

Key Skills & Concepts

Creating functions

Passing data to functions

Creating default arguments

Returning data from functions

Working with text fields, checkboxes, and radio buttons
Handling multiple-selection HTML controls

Working with image maps

The previous chapter introduced the basics of PHP. In this chapter, you’ll get a real working
knowledge of the subject. Here, you’re going to see how to write functions in JavaScript
and how to handle user input in HTML controls like text fields, radio buttons, checkboxes,
and more.
Let’s start with functions in PHP, which should be somewhat familiar to you from your
study of functions in JavaScript.

Introducing PHP Functions

We’ll start with PHP functions by jumping right into an example. Say that you have a web
page like this:

<html>
<head>
<title>Using PHP Functions</title>
</heads>

<body>
<h1>Using PHP Functions</hl>

<?php
echo "<h3>Welcome to my Web page!</h3>";
echo "
";
echo "Do you like it?";
echo "
";
echo "
";

Chapter 10: PHP in Depth

?>
</body>
</html>

That looks good, but suppose that you don’t want anyone to steal anything from your
beautiful new page, and thus decide to add a copyright notice. To do that, you plan to call
a function named print_copyright_notice, which you can call like this, just as you might in
JavaScript:

<html>
<head>
<title>Using PHP Functions</title>
</heads>

<body>
<h1>Using PHP Functions</hl>

<?php
echo "<h3>Welcome to my Web page!</h3>";
echo "
";
echo "Do you like it?";
echo "
";
echo "
";

print copyright notice();

?>
</body>
</html>

You can create the print_copyright_notice function just as you can in JavaScript, with the
keyword function, the name of the function, and a pair of parentheses:

<html>
<head>
<title>Using PHP Functions</title>
</head>

<body>
<h1>Using PHP Functions</hl>

<?php
echo "<h3>Welcome to my Web page!</h3>";
echo "
";

345

346 Ajox: A Beginner's Guide

echo "Do you like it?";
echo "
";
echo "
";

print copyright notice() ;

function print copyright notice()

?>
</body>
</html>

Then, you place the code you want to execute when the function is called inside the
function’s body. In this case, you can display a copyright notice like this (in this example,
functions.php):

</html>
<html>
<head>
<title>Using PHP Functions</title>
</head>

<body>
<h1>Using PHP Functions</hl>

<?php
echo "<h3>Welcome to my Web page!</h3>";
echo "
";
echo "Do you like it?";
echo "
";
echo "
";

print copyright notice() ;

function print copyright notice()
{
echo "<hr>";
echo "<center>";
echo "© 2008 PHP Super Wonder Wizards, Inc.";
echo "</center>";
}
?>
</body>
</html>

Chapter 10: PHP in Depth 347

‘A Using PHP Functions - Microsoft Internet Explorer

File Edit View Favorites Tools Help
Qiack ~ © - ¥ @ (0| Poearch rFavortes 8 | D- & W - [@& @ 3

Address @ http: fflocalhostfchapter 10ffunctions. php V| Go Links **

Using PHP Functions

Welcome to my Web page!

Do you like 17

£ 2008 PHP Super Wonder Wizards, Inc.

Figure 10-1 Displaying a copyright notice by calling a function

You can see the results in Figure 10-1, where the function has indeed been called, displaying

a copyright notice.
Great—but there’s a lot more to functions. How about passing data to them?

Passing Data to Functions in PHP

You can also pass data to functions in PHP, just as you can in JavaScript—and the syntax

is the same, too. For example, say that you want to pass the copyright text to display to the
print_copyright_notice function in a new example, passfunctions.php. You can pass that text
like this:

<html>
<head>
<title>Passing Data to PHP Functions</titles>
</heads>

<body>
<hl>Passing Data to PHP Functions</hl>

<?php
echo "<h3>Welcome to my Web page!</h3>";
echo "
";

348 Ajox: A Beginner's Guide

echo "Do you like it?";
echo "
";
echo "
";

print copyright notice(

"©

?>
</body>
</html>

2008 PHP Super Wonder Wizards,

Inc.");

And, just as in JavaScript, you give the passed data a name ($text here) in the argument list
of the function, and then you can refer to that data using that name in the body of the function:

<html>
<head>

<title>Passing Data

</head>

<body>

<hl>Passing Data to PHP Functions</hl>

<?php

echo "<h3>Welcome to my Web page!</h3>";

echo "
";
echo "Do you like it?";
echo "
";
echo "
";

print copyright notice(
"© 2008 PHP Super Wonder Wizards,

function print copyright notice($text)

{

echo
echo
echo
echo
}
?>
</body>
</html>

"<hr>";
"<center>";
Stext;
"</center>";

to PHP Functions</title>

Inc.");

The results appear in Figure 10-2—as you can see, the data was passed to the function,
which used that data correctly.

Chapter 10: PHP in Depth 349

‘A Passing Data to PHP Functions - Microsoft Internet Explorer,

File Edit View Favorites Tools Help
Qback ~ O - ¥ A (0| Poearch TrFavortes 8 | R- & W - @& @ 3

Address @ http: fflocalhost fchapter 10/passfunctions. php V| Go Links **

Passing Data to PHP Functions

Welcome to my Web page!

Do you like 17

£ 2008 PHP Super Wonder Wizards, Inc.

Figure 10-2 Passing data to functions

Pass Multiple ltems to a Function

Want to pass multiple items to a function? That also works just the same as in JavaScript. You
separate the items in the parameter list with commas. Give this one a try—pass two numbers to
a function named adder to add them and display the result. Here’s what that looks like:

<html>
<head>
<title>Passing Data to PHP Functions</title>
</head>

<body>
<hl>Passing Data to PHP Functions</hl>

<?php
echo "<h3>Welcome to My Math Page!</h3>";
echo "
";
echo "How much is 5 + 3?";
echo "
";

adder (5, 3);

function adder ($operandl, $operand2)

(continued)

350 Ajox: A Beginner's Guide

{

echo "The sum is ";
echo $operandl + S$operand2;

}

?>
</body>
</html>

Creating Default Arguments in Functions

In PHP, you can also set up default arguments in functions. These defaults are used in case
you don’t supply a value for a parameter. Here’s an example, default.php, that sets some

default text to be used in the copyright notice. You can do that by supplying a default value
for the $text parameter, which you do with an equal sign in the declaration of the function:

function print copyright notice($text = "© 2008")
echo "<hr>";
echo "<center>";
echo sStext;
echo "</center>";

}

Now if you call print_copyright_notice and don’t pass any data to the function, $text will
be set to "© 2008" by default. Let’s test that out by calling the function but not passing
any data to it, in a new example, default.php:

<html>
<head>
<title>Using Default Arguments With PHP Functions</title>
</heads>

<body>
<h1>Using Default Arguments With PHP Functions</hl>

<?php
echo "<h3>Welcome to my Web page!</h3>";
echo "
";
echo "Do you like it?";
echo "
";
echo "
";

print copyright notice();

function print copyright notice($text = "© 2008")

Chapter 10: PHP in Depth

& | Using Default Arguments With PHP Functions - Microsoft Internet Explorer.

File Edit View Favorites Tools Help

Qback - O - ¥ A 0| Poearch rFavartes 8 | D- & W - L @& @ 3

Address @ http: fflocalhost fchapter 10fdef aulk. php V| Go Links **

Do you like 17

Using Default Arguments With PHP Functions

Welcome to my Web page!

© 2003

Figure 10-3 Using default arguments with functions

echo
echo
echo
echo
}
?>
</body>
</html>

"<hr>";
"<center>";
Stext;
"</centers>";

You can see the results in Figure 10-3—the default value for the copyright notice was

indeed used.

Returning Data from Functions

Because you already know how JavaScript works, you already know how returning data from

PHP functions works, for the most part. For example, if you want to build a function named
adder that adds two numbers and returns their sum, you can start like this in a new example,
returnfunctions.php:

<html>
<head>

<title>Returning Data From PHP Functions</title>

</heads>

<body>

<hl>Returning Data From PHP Functions</hl>

351

352 Ajax: A Beginner's Guide

Ask the Expert

Q: What if I have multiple parameters that I want to assign default values to? For example,
what if I modified the adder function to take three parameters, and wanted to give the
second parameter, $operand2, a default value?

function adder (Soperandl, Soperand2, S$Soperand3l)

{

echo "The sum is ";
echo Soperandl + Soperand2 + Soperand3;

}

A: 1t you give one parameter a default value, you have to give all the parameters to the right
of it default values, too. So if you want to give $operand2 a default value, you have to
assign a default value to $operand3 also:

function adder (Soperandl, Soperand2 = 1, S$Soperand3 = 3)
{

echo "The sum is ";

echo Soperandl + Soperand2 + Soperand3;

}

<?php
echo "<h3>Welcome to My Math Page!</h3>";
echo "
";
echo "How much is 5 + 3?2";
echo "
";

function adder ($operandl, $operand2)

{

}

?>
</body>
</html>

You can use the return statement to return the sum of the two numbers this way:

<html>
<head>
<title>Returning Data From PHP Functions</title>
</head>

Chapter 10: PHP in Depth 353

<body>
<hl>Returning Data From PHP Functions</hl>

<?php
echo "<h3>Welcome to My Math Page!</h3>";
echo "
";
echo "How much is 5 + 3?";
echo "
";

function adder (Soperandl, S$operand2)

{

return $operandl + $operand2;

}

?>
</body>
</html>

Now you can call the adder function and, just as in JavaScript, the function’s name will be
replaced with the value returned by that function:

<html>
<head>
<titles>Returning Data From PHP Functions</titles
</head>

<body>
<hl>Returning Data From PHP Functions</hl>

<?php
echo "<h3>Welcome to My Math Page!</h3>";
echo "
";
echo "How much is 5 + 3?";
echo "
";

echo "The sum is " . adder (5, 3);

function adder ($Soperandl, Soperand2)

{

return $operandl + $operand?2;

}

?>
</body>
</html>

You can see what this looks like in Figure 10-4. Just as you’d expect.

You can also set up PHP functions to return multiple items at the same time. You do that
by returning an array, which PHP makes easy to work with in code—here’s an example,
multiplereturnfunctions.php.

354 Ajox: A Beginner's Guide

‘A Returning Data From PHP Functions - Microsoft Internet Explorer,

File Edit View Favorites Tools Help

Qback - O - ¥ A (| Poearch rFavartes 8 | R- & W - L @B @ 3

Address @ http:/ flocalhostichapter 10freturnfunctions. php v| ke

Returning Data From PHP Functions

Welcome to My Math Page!

How much 1z 5+ 37
The sum iz 3

Figure 10-4 Returning data from functions

Start with a function named $fruits that returns an array of fruits, which you create with
the built-in PHP array function:

<html>
<head>
<titles
Returning Multiple Values From PHP Functions
</title>
</heads>

<body>
<hl>

Returning Multiple Values From PHP Functions
</hl>

<?php

function fruits|()
$array = array("Apples", "Oranges", "Plums", "Cherries",
"Strawberries", "Bananas");

return $array;

}
?>
</body>
</html>

Chapter 10: PHP in Depth

You can handle a function that returns an array with the built-in list function in PHP. That
function lets you assign each element in an array to a new variable. Here’s how that works,
where you’re assigning the first element in the returned array to the variable named $first, the
second element to the variable named $second, and so on:

<html>
<head>
<title>
Returning Multiple Values From PHP Functions
</title>
</heads>

<body>
<hls>

Returning Multiple Values From PHP Functions
</hl>

<?php

list($first, $second, $third, $fourth, $fifth, $sixth) = fruits();

function fruits()

{

Sarray = array("Apples", "Oranges", "Plums", "Cherries",
"Strawberries", "Bananas") ;

return Sarray;

}

?>
</body>
</html>

Finally, you can display the new variables and their values:

<html>
<head>
<title>
Returning Multiple Values From PHP Functions
</title>
</head>

<body>
<hl>

Returning Multiple Values From PHP Functions
</hl>

355

356 Ajox: A Beginner's Guide

<?php
list (Sfirst, S$second, S$Sthird, S$fourth, $fifth,

echo "\$first: $first
";
echo "\$second: $second
";
echo "\$third: $third
";
echo "\$fourth: $fourth
";
echo "\$fifth: $fifth
";
echo "\$sixth: $sixth
";

function fruits()

{ Sarray = array("Apples", "Oranges", "Plums",
"Strawberries", "Bananas") ;
return $array;
1
?>
</body>
</html>

Ssixth) =

fruits();

"Cherries",

The results of this example appear in Figure 10-5; as you can see, the fruits function was

able to return multiple values.

& | Returning Multiple Values From PHP Functions - Microsoft Internet Explorer

File Edit View Favorites Tools Help

@Back -) ERE! .;.\J O Search <7 Favorites 42 (- =N @ LB 93

Address @ http: fflocalhost fchapter 10fmulkiplereturnfunctions. php

v|G0

Links **

Ffirst: Apples
fsecond: Oranges
Bthird: Plums
Ffourth: Cherries
Bfifth: Strawberries
Fstth: Bananas

Figure 10-5 Returning multiple data values from functions

Returning Multiple Values From PHP Functions

Chapter 10: PHP in Depth 357

Working with HTML Controls in PHP

Much of PHP has to do with reading information entered by the user into HTML controls like
text fields, radio buttons, list boxes, and the like, and in this section you’ll see how to decode
that information in PHP.

To start, you need a <form> element in your web page in which to put your HTML
controls. Here are the important attributes of the <form> element:

ACTION Specifies the URL that will handle the form data. Note that you can omit this
attribute, in which case its default is the URL of the current document.

METHOD Specifies the method or protocol for sending data to the target action URL. If
you set it to GET (the default), this method sends all form name/value pair information in
an URL that looks like:

URL?name=value&name=value&name=value

If you use the POST method, the contents of the form are encoded as with the GET
method, but are sent in hidden environment variables.

TARGET Indicates a named frame for the browser to display the form results in.

Here’s an example that uses the <form> element. This example uses the POST method to
send its data to the server, and sends its data to a PHP file named responder.php in particular:

<html>
<head>
<titles>
Using HTML forms
</title>
</head>
<body>
<hl>
Using HTML forms
</hl>
<form method="post" action="responder.php">
</form>
</body>

</html>

358 Ajax: A Beginner's Guide

Okay, that sets up the <form> element. To actually send the data inside any HTML
controls you put in the <form> element, you can use a Submit button, which you create with
the <input type="submit"> element:

<html>
<head>
<title>
Using HTML forms
</title>
</head>

<body>
<hls>
Using HTML forms
</hl>
<form method="post" action="responder.php">

<input type="submit" value="Submit">
</form>
</body>
</html>

You can also give the user the chance to return the contents of all HTML controls in the
form to their default values with a Reset button, which you create with the <input type =
"reset"> element:

<html>
<head>
<title>
Using HTML forms
</title>
</head>
<body>
<hl>
Using HTML forms
</hl>
<form method="post" action="responder.php">
<input type="submit" value="Submit"s>
<input type="reset" value="Reset">
</form>
</body>

</html>

Chapter 10: PHP in Depth 359

Now that we’ve set up the <form> element, let’s place some HTML controls in the form,
starting with text fields, followed by checkboxes, radio buttons, list boxes, and image maps.

Using Text Fields

Text fields let the user enter text in web pages, and you can read that text back on the server
with PHP. Here’s an example, textfield.html, that shows how to read and display the user’s
name. We’ll start this example with the HTML part, and then write the PHP.

Creating the HTML
We need an HTML form in textfield.html in which to place our new text field, and we need to
send the data in the form to textfield.php:

<html>
<head>
<title>
Using Text Fields
</title>
</head>

<body>
<center>

<hl>
Using Text Fields
</hl>

<form method="post" action="textfield.php">

</form>

</centers>
</body>
</html>

Next, we can add a prompt to the user to enter their name (you can use HTML inside
<form> elements):

<html>
<head>
<title>
Using Text Fields
</title>

</head>

360 Ajox: A Beginner's Guide

<body>
<centers>
<hl>
Using Text Fields
</hl>
<form method="post" action="textfield.php">
Please enter your name:
</form>
</centers>
</body>
</html>

And now we’ll add the text field itself, which is an <input type="text"> element, giving it
the name "name" (because it’s supposed to hold the person’s name):

<html>
<head>
<title>
Using Text Fields
</titles>
</head>
<body>
<center>
<hl>
Using Text Fields
</hl>
<form method="post" action="textfield.php">
Please enter your name:
<input name="name" type="text">
</form>
</center>
</body>

</html>

Chapter 10: PHP in Depth 361

Finally, we can add the needed Submit button:

<html>
<head>
<titles
Using Text Fields
</title>
</head>
<body>
<center>
<hls>
Using Text Fields
</hl>
<form method="post" action="textfield.php">
Please enter your name:
<input name="name" type="text">

<input type="submit" value="Submit">
</form>
</centers>
</body>
</html>

You can see what textfield.html looks like in Figure 10-6, where the user has entered their
name and is clicking the Submit button.

‘A Using Text Fields - Microsoft Internet Explorer

File Edit View Favorites Tools Help
Qbxk - @ - [F @ .;b D search <7 Favorites 42 [zjv = @ LB 93

Address @ http: fflocalhost fchapter 1 0ftextfield. html V| Go Links **

Using Text Fields
Please enter your natne:

Figure 10-6 Entering text into a text field

362 Ajox: A Beginner's Guide

So what happens when the user clicks the Submit button? The text in the text field is sent
to the PHP script textfield.php, but first we need to write that script.

Creating the PHP
Now we’ll write textfield.php. We can place HTML in PHP pages, so we’ll start off with a
message telling the user that we read their name:

<html>
<head>
<title>
Reading text from text fields
</title>
</head>

<body>
<center>

<hl>

Reading text from text fields
</hl>
Your name is

</centers
</body>
</html>

We’ll create the PHP part of the script this way:

<html>
<head>
<title>
Reading text from text fields
</title>
</head>
<body>
<center>
<hls>
Reading text from text fields
</hl>
Your name is
<?php
?>
</centers>
</body>

</html>

Chapter 10: PHP in Depth 363

To recover data sent from a web page with the GET method, you can use the PHP array
$_GET. To recover data sent with the POST method, you can use the PHP array $_POST. You
can also read data sent with either GET or POST using the $_REQUEST array, and that’s what
we’ll do here.

So, to read the data from the text field, we only need to pass the name of the text field,
which is "name", to the $_REQUEST array. Here’s how that works, where we echo the
person’s name to the web page we send back to the browser:

<html>
<head>
<titles
Reading text from text fields
</title>
</head>

<body>
<center>

<hl>
Reading text from text fields
</hl>
Your name is
<?php
echo § REQUEST ["name"];

?>

</centers>

</body>
</html>

You can see the results in Figure 10-7, where we’ve been successful in reading the user’s
name from PHP. Cool.

‘A Reading text from text fields - Microsoft Internet Explorer, :”E”z|
File Edit View Favorites Tools Help 't"
Qback ~ & - ¥ A | Poearch rFavartes @ | 2- % Ml - 8 @ 3
Address @ http: fflocalhostfchapter 10ftextfield. php V| Go Links **

Reading text from text fields

Tour name 1z Steve

Figure 10-7 Reading the user’s name

364 Ajox: A Beginner's Guide

Using Checkboxes

Another popular HTML control is the checkbox. You handle checkboxes in a slightly different
way from text fields, as you’re going to see in a new example.

Creating the HTML

This example, checkbox.html, will ask the user if they would like to win the lottery, allowing
them to answer Yes or No by checking a box. We start with a form that sends its data to a PHP
script named checkbox.php:

<html>
<head>
<title>Using Checkboxes</title>
</heads>

<body>
<center>
<h1>Using Checkboxes</hl>
<form method=post action="checkbox.php">

</form>
</centers>
</body>
</html>

Next we add the prompt to the user and the Yes checkbox, an <input type="checkbox">
element—note the name we give to this control is "check1":

<html>
<head>
<title>Using Checkboxes</title>
</head>
<body>
<center>
<h1>Using Checkboxes</hl>
<form method=post action="checkbox.php">
Would you like to win the lottery?
<input name="checkl" type="checkbox" value="Yes">
Yes
</form>
</centers>
</body>

</html>

Chapter 10: PHP in Depth

We next add the second checkbox, the No checkbox, giving it the name "check2", and add
the Submit button:

<html>
<head>
<title>Using Checkboxes</title>
</head>
<body>
<center>
<hl1>Using Checkboxes</hl>
<form method=post action="checkbox.php">
Would you like to win the lottery?
<input name="checkl" type="checkbox" value="Yes">
Yes
<input name="check2" Type="checkbox" value="No">
No

<input type="submit" value="Submit">
</form>
</center>
</body>
</html>

Great—you can see this new page in Figure 10-8, complete with the checkboxes.
‘When the user clicks the Submit button, the data in the checkboxes is sent to checkbox
.php, and that PHP script is coming up next.

‘A Using Checkboxes - Microsoft Internet Explorer,

File Edit View Favorites Tools Help
Qiack -~ © - ¥ A (0| Poearch rFavartes 8 | @- & W - L @& @ 3

Address @ http: fflocalhost fchapter 10fcheckbox, html V| Go Links **

Using Checkboxes

Would you like to win the lottery? [Yes [0 Mo

Figure 10-8 A web page complete with checkboxes

365

366 Ajox: A Beginner's Guide

Creating the PHP

We named the first checkbox "checkl1", so can we just examine the setting of check! and
report it like this?

<html>
<head>
<titles>
Reading data from checkboxes
</title>
</head>

<body>
<center>
<hl>Reading data from checkboxes</hl>

You checked

<?php
echo $ REQUEST ["checkl"], "
";

?>
</center>
</body>
</html>

No, we can’t do that. If check]1 is not checked, trying to reference $_REQUEST["check1"]
will cause an error (because checkl has no value in the $_REQUEST array). So, first we have
to determine whether check1 has been checked. We can do this with the isset function, which
determines whether array elements have been set and returns true if so (and false otherwise):

<html>
<head>
<titles
Reading data from checkboxes
</titles>
</head>

<body>
<center>
<hl>Reading data from checkboxes</hl>

You checked
<?php
if (isset($ REQUEST["checkl"]))
echo $ REQUEST ["checkl"], "
";

Chapter 10: PHP in Depth 367

?>
</centers>
</body>
</html>

The value of $_REQUEST|"check1"] is the value we set for checkl in the checkbox.html
web page—that is, “Yes.” Similarly, we can evaluate the No checkbox, check?2, like this:

<html>
<head>
<title>
Reading data from checkboxes
</titles>
</heads>
<body>
<centers
<hl>Reading data from checkboxes</hl>
You checked
<?php
if (isset ($_REQUEST["checkl"]))
echo $ REQUEST ["checkl"], "
";
if (isset($_REQUEST["check2"]))
echo § REQUEST ["check2"], "
";
?>
</centers>
</body>
</html>

You can see the result in Figure 10-9, where checkbox.php correctly identified the
checked checkbox.

‘A Reading data from checkboxes - Microsoft Internet Explorer

File Edit View Favorites Tools Help

Qback - © - A A | Poearch FeFavries @ | - [l - DB @ 3

Address @ http: fflocalhostfchapter 10fcheckbox, php

Reading data from checkboxes

Tou checked Tes

Figure 10-9 Reading data from checkboxes

368

Ajax: A Beginner's Guide

On the other hand, note that it’s perfectly possible for the user to click both checkboxes
in this example, which would give us the confusing result ““You checked Yes No.” Since only
one answer—Yes or No—is possible here, we need to set up two controls so that the user can
select only one of them at a time. And that means radio buttons.

Using Radio Buttons

As every web user knows, radio buttons are those round controls in which dots appear when
they are clicked (selected). Radio buttons work in concert, meaning only one radio button of a
group can be selected at a time.

To get a handle on how radio buttons work with PHP, we’ll take a look at an example,
radiobutton.html.

Creating the HTML

The radiobutton.html example starts with a form element that will send its data to radiobutton.php:

<html>
<head>
<title>Using radio buttons</title>
</heads>

<body>
<center>
<h1>Using radio buttons</hl>
<form method=post action="radiobutton.php">

</form>
</centers>
</body>
</html>

Next we add a radio button with the name "radiol" and the value Yes:

<html>
<head>
<title>Using radio buttons</title>
</head>

<body>
<center>
<h1>Using radio buttons</hl>
<form method=post action="radiobutton.php">
Would you like to win the lottery?
<input name="radiol" type="radio" wvalue="Yes">
Yes

Chapter 10: PHP in Depth

</form>
</centers>
</body>
</html>

For the second radio button, you might think that we are going to name it "radio2", but
to make it act together with radiol, we have to give it the same name, radiol (we also add a
Submit button):

<html>
<head>
<title>Using radio buttons</title>
</head>
<body>
<center>
<h1>Using radio buttons</hl>
<form method=post action="radiobutton.php">
Would you like to win the lottery?
<input name="radiol" type="radio" value="Yes">
Yes
<input name="radiol" Type="radio" value="No">
No

<input type="submit" value="Submit">
</form>
</center>
</body>
</html>

You can see radiobutton.html in Figure 10-10.
Next, let’s create radiobutton.php.

Creating the PHP
In radiobutton.php, we start with some HTML.:

<html>
<head>
<title>
Reading data from radio buttons
</titles>

</head>

369

370 Ajox: A Beginner's Guide

‘A Using radio buttons - Microsoft Internet Explorer

File Edit View Favorites Tools Help

I
Qiack - O - ¥ A (| Poearch rFavartes 8 | R- & W - L @B @ 3

Address @ http: fflocalhost fchapter 10fradiobutton, html

Using radio buttons

Would you like to win the lottery? ® Yes O Mo

Figure 10-10 Using radio buttons in radiobutton.html

<body>
<center>

<hl>Reading data from radio buttons</hl>

You selected

</centers>
</body>
</html>

Next, we can use the isset function to check if there’s any data waiting for us under the
name radiol:

<html>
<head>
<title>

Reading data from radio buttons
</title>

</heads>
<body>
<center>

<hl>Reading data from radio buttons</hl>

You selected
<?php
if (isset($ REQUEST["radiol"]))

Chapter 10: PHP in Depth

?>
</centers>
</body>
</html>

If there is data waiting for us under the name "radiol", that data will be the value of the
first radio button (“Yes”) or the second radio button (“No”). To display the radio button data,
we simply have to echo $_REQUEST["radiol"] this way:

<html>
<head>
<title>
Reading data from radio buttons
</titles>
</heads>
<body>
<center>
<hl>Reading data from radio buttons</hl>
You selected
<?php
if (isset ($_REQUEST["radiol"]))
echo $§ REQUEST["radiol"], "
";
?>
</center>
</body>
</html>

You can see the results in Figure 10-11—radiobutton.php correctly identified the radio
button the user selected.

‘A Reading data from radio buttons - Microsoft Internet Explorer

File Edit View Favorites Tools Help

Qback ~ © - ¥ A | Poearch rFavartes @ | R- % Ml - 8 @ 3

Address @ http: fflocalhost fchapter 10fradiobutton, php

Reading data from radio buttons

Tou selected Yes

Figure 10-11 Reading data from radio buttons

371

372 Ajox: A Beginner's Guide

Using List Boxes
The next HTML control in our survey is the HTML list box, which lets users select from a list
of items. There are two types of list boxes:

Single-selection list box The user may select only one item. This control works much
like the controls we’ve already reviewed. You name the control in the web page, and get
the selection the user made with the $_REQUEST (or $_GET or $_POST) array.

Multiple-selection list box The user may select from multiple items. You create these
list boxes in HTML with the multiple attribute. The way you handle these list boxes is
different from how you handle other controls.

The focus of this section is multiple-selection list boxes.

Creating the HTML

This example, listbox.html, will display a list box with a selection of fruits. The user can make
multiple selections from the list, which will then be displayed by listbox.php. In listbox.html,
we start with a form indicating that listbox.php will be sent the data from the list box:

<html>
<head>
<title>Using Lists</title>
</head>

<body>
<center>
<hl>
Using Lists
</hl>

<form method="get" action="listbox.php">

</form>
</centers>
</body>
</html>

Next, we create a new multiple-selection list box with the <select> element, adding the
multiple attribute to make this a multiple-selection list box, and we also add the needed
Submit button:

<html>
<head>
<title>Using Lists</title>
</heads>

Chapter 10: PHP in Depth

<body>
<centers>
<hl>
Using Lists
</hl>

<form method="get" action="listbox.php">

Select your favorite fruit:

<select name="fruit" multiple>

</select>

<input type="submit" wvalue="Submit">

</form>

</centers>
</body>
</html>

Next, we can stock the list box with fruit, using <option> elements:

<html>
<head>
<title>Using Lists</title>
</head>
<body>
<center>
<hl>
Using Lists
</hl>

<form method="get" action="listbox.php">

Select your favorite fruit:

<select name="fruit" multiple>
<option>Strawberries</option>
<option>Cherries</option>
<option>Apples</option>
<option>Watermelons</option>

</select>

373

374 Ajox: A Beginner's Guide

<input type="submit" value="Submit">
</form>
</centers>
</body>
</html>

Here’s the key: since this is a multiple-selection list box, the selections the user makes in it
won’t be sent as a single item to the server, as has happened with the previous HTML examples
in this chapter. Instead, the selections the user makes will be sent to the server as an array.

How do you tell PHP to expect an array for the fruit list box? When working with PHP,
you change the name of the control from a single word, such as fruit, into an array, fruit[].
Here’s how it looks in HTML:

<html>
<head>
<title>Using Lists</title>
</heads>
<body>
<center>
<hl>
Using Lists
</hl>
<form method="get" action="listbox.php">
Select your favorite fruit:

<select name="fruit[]" multiple>
<option>Strawberries</option>
<option>Cherries</option>
<option>Apples</options>
<option>Watermelons</option>
</select>

<input type="submit" value="Submit">
</form>
</centers>
</body>
</html>

Great—you can see this page in Figure 10-12, where the fruits are displayed, and the user
has selected two of them (you can use the sHIFT and cTrL keys to make multiple selections in
multiple-selection list boxes).

Now it’s time to create listbox.php.

Chapter 10: PHP in Depth

A Using Lists - Microsoft Internet Explorer,

File Edit View Favorites Tools Help

Qbak - @ - @ @A 0| Poearch FoFavaries @ | (3D~ da W] - L E @ 3

Address @ http: fflocalhost fchapter 10flistbox:, html

Using Lists

Zelect your favorite fhuit:

@ Done

‘-a Local intranet:

Figure 10-12 A multiple-selection list box

Creating the PHP

We start listbox.php, the script that handles the selections the user made in listbox.html, with

some HTML to set the stage:

<html>
<head>

<title>Reading Selections From Lists</titles>
</head>

<body>
<centers
<hl>Reading Selections From Lists</hl>
You selected:

</center>
</body>
</html>

375

376 Ajox: A Beginner's Guide

We’re going to display the user selections using an HTML unordered list, which uses the
 tag:

<html>
<head>
<title>Reading Selections From Lists</title>
</head>

<body>
<center>
<hl>Reading Selections From Lists</hl>
You selected:

</centers>
</body>
</html>

To list the selected fruits, we can use a PHP foreach loop over the fruit[] array, which we
can access as $_REQUEST]["fruit"]:

<html>
<head>
<title>Reading Selections From Lists</title>
</head>
<body>
<center>
<hl>Reading Selections From Lists</hl>
You selected:

<?php
foreach($ REQUEST["fruit"] as $fruit)
.

</centers>
</body>

</html>

Chapter 10: PHP in Depth

Finally, we make every selected fruit into an item in the list with an tag:

<html>
<head>
<title>Reading Selections From Lists</title>
</head>
<body>
<center>
<hl>Reading Selections From Lists</hl>
You selected:

<uls>
<?php
foreach($ REQUEST["fruit"] as $fruit) {
echo " $fruit
";
}
?>

</centers>
</body>
</html>

You can see the results in Figure 10-13. Cool!

Okay, now let’s take a look at the last HTML control covered in this chapter, image maps.

‘A Reading Selections From Lists - Microsoft Internet Explorer

File Edit View Favorites Tools Help
Qback - O - ¥ A (| Poearch rFavartes 8 | D- & W - L @& @ 3

Address @ http: fflocalhost fchapter 10listbox, php?Fruit%:5B%%5D=5trawberriesafruit #%56%50=Apples V| Go Links **

Reading Selections From Lists

Tou selected:

s Strawherres
s Apples

Figure 10-13 Reading data from a multiple-selection list box

377

378 Ajax: A Beginner's Guide

Using Image Maps

Image maps are those clickable images that contain “hotspots” that the application responds
to when you click them. The way you handle image maps is unlike any other control, because
image maps send you two pieces of data—the x and y location where the user clicked the
mouse in the image map—and that means you can’t just access their data under a single name.

Creating the HTML

In this example, map.html, we start with some HTML to set the stage:

<html>
<head>
<titles
Using Image Maps
</title>
</heads>

<body>
<center>

<hl>
Using Image Maps
</hl>

</center>

</body>
</html>

We can add a form that posts the click location in the image map to a PHP file named
map.php:

<html>
<head>
<title>
Using Image Maps
</title>
</head>

<body>
<center>
<hl>

Using Image Maps
</hl>

Chapter 10: PHP in Depth 379

<form method="post" action="map.php">

</form>
</centers>

</body>
</html>

The image map itself is created with an <input type="image"> element, and we’ll name it
"map" and use an image file named map.jpg as the image that will appear:

<html>
<head>
<title>
Using Image Maps
</titles>
</head>
<body>
<center>
<hl>
Using Image Maps
</hl>
<form method="post" action="map.php">
Click anywhere in the image map.

<input name="map" type="image" src="map.jpg">
</form>
</center>
</body>
</html>

You can see the results in Figure 10-14, where the image map is about to be clicked by
the user.

380 Ajox: A Beginner's Guide

& | Using Image Maps - Microsoft Internet Explorer.

File Edit View Favorites Tools Help

L
Qbxk - @ - [F @ .;b O Search 57 Favorites 42) ﬂg' & |5’_ﬂ rUE 93
Address @ http: fflocalhost fchapter 10fmap. html

v| Go Links **

Using Image Maps a1

Clck anywhere in the image.

& -
a Done

‘a Local intranet:

Figure 10-14 An image map

Now let’s create the PHP, map.php, that reads and reports the location where the image
map was clicked.
Creating the PHP
In map.php, we again start with some HTML.:
<html>
<head>

<title>Reading Image Map Data</title>
</head>

Chapter 10: PHP in Depth 381

<body>
<center>
<hl>Reading Image Map Data</hl>

You clicked the image at (

</center>

</body>
</html>

Now we’ve got to display the x and y location of the mouse click. The name of the HTML
control containing the map was simply "map", and PHP will automatically create map_x to hold
the x coordinate and map_y to hold the y coordinate. That means we can display the location at
which the user clicked the image map like this, using the $_REQUEST array:

<html>
<head>
<title>Reading Image Map Data</titles
</head>
<body>
<center>
<hl>Reading Image Map Data</hl>

You clicked the image at (
<?php
echo $ REQUEST["map x"], ", ", $ REQUEST["map y"l;
?>
).
</centers>
</body>
</html>

You can see the results in Figure 10-15, which shows the location, in pixel coordinates,
where the user clicked the map (note that (0, 0) is at upper left in the image map).

382 Ajax: A Beginner's Guide

& | Reading Image Map Data - Microsoft Internet Explorer

File Edit View Favorites Tools Help

Qbak - © - H A | Poearch rravartes @ | R- % Ml - U 8 @ 3
Address @ http: fflocalhost fchapter 10fmap. php V| Go Links **

Reading Image Map Data

Tou clicked the image at { 367, 3243,

@ Done

‘d Local intranet:

Figure 10-15 Reading data from an image map

Knowing the location at which the mouse was clicked is very important to bring the

“hotspots” to life in your web page. Now that you have the mouse location, you know which
hotspot was clicked, and can take the appropriate action in your PHP script.

Chapter 11

Validating User Input
with Ajax and PHP

383

384 Ajax: A Beginner's Guide

Key Skills & Concepts

Displaying all the data in a form
Working with the PHP server variables
Sending form data in arrays

Creating single-page PHP applications
Validating numbers

Validating text

The previous two chapters got you started in the basics of PHP for use with Ajax, and this

chapter gives you a good working knowledge of PHP as it’s used with Ajax applications
today. In this chapter, you’re going to pick up skills you need in PHP, including displaying
all the data sent to the server in a form, which is terrific for debugging; handling form data
in arrays, which is good to do if there’s a lot of such data; and creating single-page PHP
applications.

Until now, the PHP applications we’ve created have consisted of an HTML page and a
PHP page, but most PHP applications put that all together into a single PHP page, and you’ll
see how to do that here as well.

This chapter also discusses validating user input—that is, making sure the user fills in
required fields and supplies data in the right format. You’ve seen pages on the Internet that
display error messages in red if you omit required data, and we’ll see how to do that in our
own applications in this chapter.

Here’s the framework for validating user input in PHP: You have a function, named, say,
check_data, to check the user’s input (the checking, done in PHP, is performed on the server).
The check_data function stores any errors it finds in an array named $errors, and if that array
ends up containing any error entries, you can display the error messages (in red) and then
display the “welcome” page again, asking the user to enter their data again. On the other hand,
if the user’s data is okay, you can call a second function, named, say, process_data, to handle
that data. Here’s how it looks:

check datal() ;

if (count ($errors) != 0)
display errors() ;
display welcome () ;

}

else {
process_data() ;

}

Chapter 11: Validating User Input with Ajax and PHP

You’ll see this skeleton code fleshed out near the end of this chapter. Let’s start with an
essential PHP skill: seeing what data your HTML form is actually sending to the server.

Displaying All the Data in an HTML Form

When you’re creating an Ajax application, knowing what data your web page is sending to
your PHP on the server can be important, for debugging purposes. What does the data your

PHP script is getting actually look like? Let’s take a look at an example, datadumper.html, that
dumps all the data a form sends to it.

Creating the HTML

We can start datadumper.html with a form that will send its data to datadumper.php:

<html>
<head>

<title>Displaying All Form Data</title>
</head>

<body>
<center>
<hls>Displaying All Form Data</hl>

<form method="post" action="datadumper.php">

</form>

</center>
</body>
</html>

And we can add some controls so that data will in fact be sent to datadumper.php, starting
with a text field:

<html>
<head>

<titles>Displaying All Form Data</title>
</head>

<body>
<centers>
<hl>Displaying All Form Data</hl>

<form method="post" action="datadumper.php">

Please enter your name:
<input name="name" type="text">

385

386 Ajax: A Beginner's Guide

</form>
</centers>
</body>
</html>

We might also send some data that will be sent as an array—say, fruit[]—using a list box,
as well as add the Submit button:

<html>
<head>
<titles>Displaying All Form Data</title>
</head>

<body>
<center>
<hl>Displaying All Form Data</hl>

<form method="post" action="datadumper.php">

Please enter your name:
<input name="name" type="text">

Select your favorite fruit:

<select name="fruit[]" multiple>
<option>Bananas</option>
<option>Strawberries</option>
<option>Apples</option>
<option>Watermelons</option>

</select>

<input type="submit" value="Submit">
</form>
</centers>
</body>
</html>

Chapter 11: Validating User Input with Ajax and PHP 387

& | Displaying All Form Data - Microsoft Internet Explorer.

File Edit View Favorites Tools Help 't"
Qback -~ © - ¥ A (0| Poearch TrFavortes 8 | D~ &] - [@& @ 3
Address @ http: fflocalhostfchapter11/datadumper . html V| Go Links **

Displaying All Form Data
Please enter your natne:

Zelect your favorite fhut:

Apples
YWatermelons

@ Daone ‘d Local intranet:

Figure 11-1 The datadumper.html page

That finishes datadumper.html, which you can see in Figure 11-1.
Now it’s time to write datadumper.php, the PHP all-purpose script that will display all the
data sent to it, which is very handy for debugging purposes.

Creating the PHP

Our goal in datadumper.php is to create an all-purpose PHP script that displays the form data
sent to it, no matter which page sends that form data. That means we need to recover the form
data from the $_REQUEST array, which can handle data sent with either GET or POST, not
just the $_GET or $_POST arrays.

Let’s start with some HTML to set the scene, and a PHP section:

<html>
<head>
<title>
Displaying All Form Data
</title>
</head>

<body>
<center>
<hls>Displaying All Form Data</hl>

388 Ajax: A Beginner's Guide

Here is the form's data I got:

<?php

?>
</centers>
</body>
</html>

Now we want to loop over all the data in the $_REQUEST array, and to do that, we’ll use
a foreach loop. You’ve already seen the first form of the foreach loop in Chapter 9:

foreach ($array as $value)

Here, we’re looping over $array, and each time through the loop, $value holds a new
element from the array. The second form of the foreach loop looks like this:

foreach ($array as $index => $value) {

Here, $index is the index of $value in the array—and $index can be a number or a string
(note especially that you need the => operator in this form of the foreach loop). The second
form of the foreach loop is what we want to use here, because, in addition to displaying the
data values we got in datadumper.php, we want to display the name of each data item. So
here’s how we loop over the $_REQUEST array:

<html>
<head>
<titles
Displaying All Form Data
</titles>
</head>

<body>
<centers>

<hl>Displaying All Form Data</hls>

Here is the form's data I got:

Chapter 11: Validating User Input with Ajax and PHP 389

<?php
foreach($ REQUEST as $index => $va1ue){

}
?>
</centers>
</body>
</html>

The first time through the loop, $index will hold the name of the text field, which is just
"name", and $value will hold the name the user entered into the text field. The second time
through the loop, $index will hold the name of the list box’s data array, "fruit", and $value will
hold the actual $fruit array.

In other words, we have to handle both single-item data and array data in datadumper.php.
To check if $value is an array, we can use the PHP function is_array:

<html>
<head>
<titles
Displaying All Form Data
</titles>
</head>

<body>
<center>
<hl>Displaying All Form Data</hl>

Here is the form's data I got:

<?php
foreach($ REQUEST as $index => $value) {
if (is_array($value)){

}
1
?>
</center>
</body>

</html>

390 Ajox: A Beginner's Guide

If $value is an array, we can loop over it with another foreach loop:

<html>
<head>
<title>
Displaying All Form Data
</title>
</head>

<body>
<center>
<hl>Displaying All Form Data</hl>

Here is the form's data I got:

<?php
foreach($ REQUEST as $index => $value) {
if (is_array($value)) {
foreach($value as $number => $item){

}
}
}
?>
</centers>
</body>
</html>

Inside this new loop, we’re looping over the array in the $value variable; $number will
hold the index number of the items in the array, and $item will hold the name of the item itself.
That means that we can echo the array name, the index of the current item, and the item name

itself like this:

<html>
<head>
<title>
Displaying All Form Data
</title>
</head>

<body>
<center>
<hls>Displaying All Form Data</hl>

Here is the form's data I got:

Chapter 11: Validating User Input with Ajax and PHP

<?php
foreach ($ _REQUEST as $index => $value) {
if (is_array(Svalue)) {
foreach ($value as $number => $item) {
echo "${index} [${number}] => $item
";
1
1
1

?>
</centers>
</body>
</html>

Whew. Okay, but what if $value is not an array—what if it’s only a single data item? In
that case, we just need to display the name of the item, and its value:

<html>
<head>
<titles
Displaying All Form Data
</titles>
</head>

<body>
<center>
<hl>Displaying All Form Data</hl>

Here is the form's data I got:

<?php
foreach($ REQUEST as $index => $value) {
if (is_array (Svalue)) {
foreach ($value as $number => $item) {
echo "${index} [${number}] => $item
";
}
}
else {
echo $index, " => ", $value, "
";
}
}

?>
</center>
</body>
</html>

Great, that completes datadumper.php. In Figure 11-2, you can see it in action after the

user enters some data in datadumper.html and clicks the Submit button. Note that datadumper

.php has indeed correctly identified the data sent to it—both single items and arrays. Not bad.

391

392 Ajox: A Beginner's Guide

& | Displaying All Form Data - Microsoft Internet Explorer.

File Edit View Favorites Tools Help '1.
Qcback ~ & - ¥ A | Poearch rFavartes @ | D- % Ml - 8 @ 3
Address @ http: fflocalhost fchapter 11 fdatadumper . php V| Go Links **

Displaying All Form Data

Here iz the form's data T got:
natne == Edward
frut[0] == Bananas
frut[1] == Strawberries

Figure 11-2 Displaying the form data sent to datadumper.php

Working with PHP Server Variables

PHP also has a number of useful built-in variables that you can access in your PHP code,
called server variables. You can find the list of PHP server variables in Table 11-1.

Server Variable Description

AUTH_TYPE When running under the Apache web server and doing HTTP
authentication, holds the authentication type (such as password
authentication).

DOCUMENT_ROOT Contains the document root directory where the script is.

GATEWAY _INTERFACE Contains the version of the CGI (Common Gateway Interface—how
servers communicate with browsers) specification the server is using.

HTTP_ACCEPT Contains the text in the Accept: header from the current request.

HTTP_ACCEPT _CHARSET Contains the text in the Accept-Charset: header from the

current request.

HTTP_ACCEPT_ENCODING Contains the text in the Accept-Encoding: header from the
current request.

HTTP_ACCEPT_LANGUAGE | Contains the text in the Accept-Language: header from the
current request.

HTTP_CONNECTION Contains the text in the Connection: header from the current request.

HTTP_HOST Contains the text in the Host: header from the current request.

Table 11-1 PHP Server Variables

Server Variable

Chapter 11: Validating User Input with Ajax and PHP 393

Description

HTTP_REFERER

Contains the address of the Eq%e (if any) that referred the user agent
to the current page. Set by the browser.

HTTP_USER_AGENT

Contains the text in the User-Agent: header from the current request.

PATH_TRANSLATED

Specifies the file-system-based path to the script.

PHP_AUTH_PW

When running under the Apache web server and doing HTTP
authentication, holds the password provided by the user.

PHP_AUTH_USER

When running under the Apache web server and doing HTTP
authentication, holds the username provided by the user.

PHP_SELF

Contains the filename of the currently executing script, relative fo the
document root.

QUERY_STRING

Contains the query string, if there is one.

REMOTE_ADDR

Contains the IP address from which the user is viewing the
current page.

REMOTE_HOST

Contains the hostname from which the user is viewing the
current page.

REMOTE_PORT

Contains the port being used on the user’s machine to communicate
with the web server.

REQUEST_METHOD

Specifies which request method was used to access the page, such as

'GET', 'HEAD', 'POST', 'PUT".

REQUEST_URI

Specifies the URI that was given to access this page, such as

'/index.html".

SCRIPT_FILENAME

Specifies the absolute pathname of the currently executing script.

SCRIPT_NAME

Contains the current script’s path. This is useful for pages that need to
point to themselves.

SERVER_ADMIN

Contains the value given to the SERVER_ADMIN directive in the web
server configuration file.

SERVER_NAME

Contains the name of the server host under which the script is
executing.

SERVER_PORT

Contains the port on the server machine being used by the web server
for communication.

SERVER_PROTOCOL

Contains the name and revision of the information protocol via which
the page was requested.

SERVER_SIGNATURE

Contains the server version and virtual hostname.

SERVER_SOFTWARE

Contains the server identification string.

Table 11-1 PHP Server Variables (continued)

394 Ajox: A Beginner's Guide

The PHP server variables can be very useful to you as an Ajax programmer. For example,
HTTP_USER_AGENT holds the name of the browser the user is using. Since you interact
with the user exclusively through the browser, it’s good to know which browser they are
using, because different browsers have different capabilities. For example, say that you want
to display the user’s name in a <marquee> element, which scrolls across the page—but is
available only in Internet Explorer. You can use the HTTP_USER_AGENT server variable
to determine whether or not the user has Internet Explorer. Let’s see this in action in a new
example, servervariables.html.

Creating the HTML

This HTML page will send its data to servervariables.php, which will display the user’s name
in a <marquee> element—if the user has Internet Explorer. Here’s servervariables.html, which
starts with a form that sends its data to servervariables.php:

<html>
<head>
<title>
Using Server Variables
</title>
</head>

<body>
<center>

<h1>Using Server Variables</hl>

<form method="post" action="servervariables.php">

</form>

</centers>
</body>
</html>

And here are the text field and Submit button in this example:

<html>
<head>
<titles
Using Server Variables
</title>
</head>

<body>
<center>

Chapter 11: Validating User Input with Ajax and PHP

<h1>Using Server Variables</hl>

<form method="post" action="servervariables.php">
Please enter your name:
<input type="text" name="name">

<input type="submit" wvalue="Submit">

</form>
</centers>
</body>
</html>
And that’s all we need—you can see the results in Figure 11-3.

Creating the PHP

In servervariables.php, we first have to determine if the user has Internet Explorer; if so, we

display their name in a <marquee> element, and if not, we display their name as normal text.

We start servervariables.php with some HTML:

<html>
<head>
<title>Using Server Variables</title>
</heads>

<body>
<centers>
<h1>Using Server Variables</hl>

A Using Server, Variables - Microsoft Internet Explorer

File Edit View Favorites Tools Help ut.'
Qiack - © - A (| Poearch rFavartes @ | 2- % Ml - 8 @ 3
Address @ http: fflocalhostfchapter 11 fservervariables, html V| Go Links **

Using Server Variables
Please enter your narne:

Figure 11-3 servervariables.html in action

395

396 Ajox: A Beginner's Guide

<?php

?>

</centers>
</body>
</html>

Then we check the HTTP_USER_AGENT server variable to see if it contains the text
"MSIE", which it will if the user’s browser is Internet Explorer. We access the HTTP_USER _
AGENT server variable using the PHP $_SERVER array, and we can use the strpos PHP string
function to find "MSIE"—if there is no "MSIE" in the string, strpos will return false:

<html>
<head>
<title>Using Server Variables</title>

</head>

<body>
<center>
<h1>Using Server Variables</hl>

<?php
if (strpos($_ SERVER["HTTP USER AGENT"], "MSIE“)){

}

?>

</center>
</body>
</html>

If we are indeed dealing with Internet Explorer, we can recover the person’s name and
display it in a <marquee> element like this:

<html>
<head>
<title>Using Server Variables</title>

</head>

<body>
<centers>
<h1>Using Server Variables</hl>

Chapter 11: Validating User Input with Ajax and PHP 397

<?php

$name = $ REQUEST ["name"];

if (strpos ($_SERVER["HTTP_ USER AGENT"], "MSIE")){
echo ("<marquee><hl>Welcome to my page,
${name}!</hl></marquee>") ;

?>

</centers>
</body>
</html>

If, on the other hand, we’re not dealing with Internet Explorer, we can display the person’s
name in a simple <h1> header:

<html>
<head>
<title>Using Server Variables</title>
</head>
<body>
<centers>
<h1>Using Server Variables</hl>

<?php
Sname = $ REQUEST ["name"] ;
if(Strpos($_SERVER[“HTTP_USER_AGENT“], "MSIE")){
echo ("<marquee><hl>Welcome to my page,
${name}!</hl></marquee>") ;
}
else {
echo ("<hl>Welcome to my page, ${name}!</hi>");
}
?>
</center>
</body>

</html>

398 Ajax: A Beginner's Guide

A Using Server, Variables - Microsoft Internet Explorer

File Edit View Favorites Tools Help

Qback - © - @ @A | Poearch FeFavries @ | - [l - DB @ 3

Address @ http: fflocalhostfchapter 11 fservervariables. php

Using Server Variables

Welcome to my page, Sam!

Figure 11-4 Displaying a <marquee> element in Internet Explorer

The result appears in Figure 11-4 in Internet Explorer, where the second line is a
<marquee> element that scrolls across the screen. Cool.

On the other hand, the same text appears as a static <h1> header in Firefox, as shown in
Figure 11-5.

©) Using Server Variables - Mozilla Firefox

File Edit Wiew Go Bookmarks Tools Help

<§| - E> - @ @ |D http:/flocalhostichapter11servervariables. php

90« [C |

’ Getting Started l;;l Latest Headlines

Using Server Variables

Welcome to my page, Sam!

Figure 11-5 Displaying static text in Firefox

Chapter 11: Validating User Input with Ajax and PHP 399

Getting Your Data in Array Format

PHP supports a convenient way to organize the data you send to it from HTML forms. You
can store such data in arrays, which is great if you have a lot of data to send, especially if your
HTML page includes several forms. Organizing your form data in arrays means such data
items are less likely to interfere with each other.

Creating the HTML

Using form arrays is simple. Just use the array and index name as the name of the variable you
want to store data under. For example, here’s what storing the user’s name in an array named
$data under the index “name” looks like in formarrays.html:

<html>
<head>
<title>
Sending Arrays of Form Data
</titles>
</head>

<body>
<center>
<hl>
Sending Arrays of Form Data
</hl>

<form method="post" action="formarrays.php">

Enter your name:
<input name="datal[namel" type="text">

</form>

</center>
</body>
</html>

Giving the name of the text field as data[name] means that you can access the user’s name
in your PHP script as $data["name"] (note that you omit the quotation marks when naming the
variable in your HTML page). Here’s how we might ask the user’s height in inches and store
that information as $data["height"]:

<html>
<head>
<title>
Sending Arrays of Form Data
</title>
</heads>

400 Ajax: A Beginner's Guide

<body>
<center>
<hl>
Sending Arrays of Form Data
</hl>

<form method="post" action="formarrays.php">

Enter your name:
<input name="data[name]" type="text">

Enter your height in inches:

<input name="datal[height]" type="text">

<input type="submit" value="Submit">
</form>

</centers>
</body>
</html>

You can see what this page, formarrays.html, looks like in Figure 11-6, where the user has
entered some information and is just about to click the Submit button.

& | Sending Arrays of Form Data - Microsoft Internet Explorer

File Edit View Favorites Tools Help
Qbxk - @ - [® @ .;b D search <7 Favorites 42 - = W_ﬂ LB 93

Address @ http: fflocalhostfchapter 11 fformarrays, heml V| Go Links **

Sending Arrays of Form Data

R—
Enter your height in nches:

Figure 11-6 Preparing to send form data in arrays to PHP

Chapter 11: Validating User Input with Ajax and PHP

Creating the PHP

In the PHP script, formarrays.php, you can recover the array containing the form data and
name it $data:

<html>
<head>
<title>
Receiving Arrays of Form Data
</title>
</head>

<body>
<center>
<hl>
Receiving Arrays of Form Data
</hl>

Your name is
<?php
$data = $ REQUEST['data'l;

</center>

</body>
</html>

And you can recover the user’s name by referencing it as $data['name']:

<html>
<head>
<titles
Receiving Arrays of Form Data
</title>
</heads>

<body>
<center>
<hl>
Receiving Arrays of Form Data
</hl>

Your name is
<?php

401

402 Ajax: A Beginner's Guide

Sdata = $_REQUEST['data'];
echo $data['name'], "
";
?>

</centers>

</body>
</html>

You can also display the user’s height in inches like this:

<html>
<head>
<titles
Receiving Arrays of Form Data
</titles>
</head>

<body>
<centers
<hls>
Receiving Arrays of Form Data
</hl>

Your name is

<?php
Sdata = $ REQUEST['data'];
echo $data['name'], "
";
?>

Your height in inches is
<?php
$data = $ REQUEST['data'l;
echo $datal'height'], "
";
?>
</center>

</body>
</html>

You can see the results in Figure 11-7. Nice.

Chapter 11: Validating User Input with Ajax and PHP 403

& | Receiving Arrays of Form Data - Microsoft Internet Explorer

File Edit View Favorites Tools Help .11'
Qback -~ © - ¥ A | Poearch eFavartes @ | 2- % Ml - 8 @ 3
Address @ http: fflocalhostfchapter 11 formarrays. php V| Go Links **

Receiving Arrays of Form Data

Tour name 1z Steve
Tour height in nches 15 72

Figure 11-7 Displaying form array data

Wrapping Applications info a Single PHP Page

Most PHP applications that you see don’t start with an HTML page and then go to a PHP page,
as ours have been doing. In most PHP applications, everything is wrapped up into a single PHP
page, and displaying everything in a PHP page means returning at least two different pages to
the browser: a welcome page, where you ask the user to enter their data, and a results page,
where you process the data they’ve sent and return the results to them.

So how do such applications do that? How do they know which page to return? The usual
way is to check whether there’s any data waiting to be processed—if not, the application displays
the welcome page; if so, the application processes that data and sends back the results page.

Here’s how that looks in a new, single-page example, singlepage.php. In the welcome
page, we’ll ask the user for their name and display that name in the results page. So how do we
know if we’ve got data (that is, the user’s name) to process? We can check if there is any data
in the $_REQUEST array under "name":

<html>
<head>
<title>
A PHP Application in a Single Page
</title>
</head>
<body>
<center>
<hl>A PHP Application in a Single Page</hl>
<?php
if (isset ($ REQUEST ["name"])) {
?>
</centers>
</body>

</html>

404 Ajax: A Beginner's Guide

If the name data is waiting for us, we can echo it back to the browser:

<html>
<head>
<title>
A PHP Application in a Single Page
</title>
</head>
<body>
<center>
<hl>A PHP Application in a Single Page</hl>
<?php
if (isset ($_REQUEST ["name"])) {
?>
Your name is
<?php
echo $ REQUEST ["name"] ;
}
?>
</centers>
</body>
</html>

On the other hand, if there is no name data waiting for us, we can display the welcome
page, which asks the user for their name by using a text field in a new form that will send its

data back to the same page, singlepage.php:

<html>
<head>
<title>
A PHP Application in a Single Page
</title>
</head>

<body>
<center>
<hl>A PHP Application in a Single Page</hl>
<?php
if (isset ($_REQUEST ["name"])) {
?>
Your name is
<?php
echo $ REQUEST ["name"] ;

}

Chapter 11: Validating User Input with Ajax and PHP 405

else {
?>
<form method="post" action="singlepage.php">
Please enter your name:

<input name="name" type="text">

<input type="submit" wvalue="Submit">
</form>
<?php
}
?>
</centers>
</body>
</html>

Note that in single-page PHP applications, you can omit the action attribute in the <form>
element, because the default action is to send the form’s data back to the same page. That
means you could also write singlepage.php like this:

<html>
<head>
<title>
A PHP Application in a Single Page
</titles>
</head>

<body>
<center>
<hl>A PHP Application in a Single Page</hls>
<?php
if (isset ($_REQUEST ["name"])) {
?>
Your name is
<?php
echo $ REQUEST ["name"] ;
}
else {
?>
<form method="post">
Please enter your name:

<input name="name" type="text">

406 Ajax: A Beginner's Guide

@ A PHP Application in a Single Page - Microsoft Internet Explorer,

File Edit View Favorites Tools Help
Qiack -~ © - ¥ A (0| Poearch TrFavortes 8 | D- & W] - @ @ 3

Address @ http: fflocalhostfchapter1 1 /singlepage. php

v| Go Links **

A PHP Application in a Single Page

Bleas e o e

Figure 11-8 Displaying form array data: welcome page

<input type="submit" value="Submit">
</form>

<?php
1
?>
</centers>
</body>
</html>

Okay, let’s take a look at what we’ve done in a browser. You can see the welcome page in
Figure 11-8, where the user has entered their name and is just about to click Submit.

The results page, which reports the user’s name, appears in Figure 11-9. Very cool.

Placing all the code for a PHP application in a single page is a new and powerful skill.

Next, you’ll see another way to test if the welcome page has already been displayed—by
setting a hidden control in the web page.

A A PHP Application in a Single Page - Microsoft Internet Explorer,

File Edit View Favorites Tools Help

Qiack - O - ¥ A 0| Poearch rFavartes @ | R- & W - L @& @ 3

Address @ http: fflocalhostfchapter1 1 /singlepage. php

v| Go Links **

A PHP Application in a Single Page

Tour name 1z Steve

Figure 11-9 Displaying form array data: results page

Chapter 11: Validating User Input with Ajax and PHP 407

Validating Input from the User

As the last topic in this chapter, we’ll take a look at how to validate data that the user entered
into a web page. Did they enter their name? Is what they typed for their age a number? Those
are the kinds of questions we’ll take up now.

Here’s an overview of the PHP code that you first saw at the beginning of this chapter,
indicating how we check for errors and display them as needed:

check _dataf() ;

if (count ($errors) != 0){
display_ errors() ;
display welcome () ;

}

else {
process _datal() ;

}

Let’s put this example, checkdata.php, together. In this example, the user will be asked
to enter their name. If they don’t enter it but click the Submit button, that’1l be considered
an error and handled on the server in PHP. That means that if the welcome page has already
been displayed, we don’t need to check whether the text field contains any data, because the
welcome page would not be displayed if the text field didn’t contain data.

Instead, we’ll use an <"input type=hidden"> control named welcome_already_displayed
to keep track of whether or not the welcome page has been displayed. This technique may be
even better than checking whether a text field has any data, because in some cases you may
want to allow the user to leave a text field blank.

Here’s how we check if the welcome page has already been shown, in checkdata.php:

<html>
<head>
<title>
Validating User Data
</title>
</head>

<body>
<centers>

<hl>Validating User Data</hl>
<?php

if (isset ($_REQUEST ["welcome_already displayed"])){

?>

</center>
</body>
</html>

408 Ajax: A Beginner's Guide

If there is data waiting for us, we can check that data in a new function, check_data, which
will fill an array named $errors with any errors that were found:

<html>
<head>
<title>
Validating User Data
</title>
</head>

<body>
<center>

<hls>Validating User Data</hl>

<?php
$errors = array():;

if (isset ($_REQUEST ["welcome already displayed"]))

check data():;

?>

</centers>
</body>
</html>

In the check_data function, we start by indicating that the $errors array is a global array,
not restricted to the check_data function:

<html>
<head>
<title>
Validating User Data
</title>
</head>

<body>
<center>

<hl>Validating User Data</hl>
<?php
Serrors = array();

Chapter 11: Validating User Input with Ajax and PHP

if(isset($_REQUEST["welcome_already_displayed"])){

check datal() ;

function check data()

{

global $errors;

}

?>

</centers>
</body>
</html>

Now we’re free to check if the user entered any text in the text field—and if they did not,
we store an error message (‘“Please enter your name”) in the $errors array:

<html>
<head>
<title>
Validating User Data
</title>
</head>

<body>
<center>

<hl>Validating User Data</hl>

<?php
Serrors = array();
if (isset ($_REQUEST ["welcome already displayed"]l)) {

check _datal() ;

function check data()

{

global Serrors;

if ($_REQUEST ["name"] == "") {

409

410 Ajox: A Beginner's Guide

$errors[] = "Please enter your name";

}
}

?>

</center>
</body>
</html>

Back in the main part of the code, just after the call to check_data, we see if any errors
were stored in the $errors array. If so, we display the error(s) with a function named display_
errors, and then display the rest of the welcome page—so that the user can try again—with a
function named display_welcome:

<html>
<head>
<title>
Validating User Data
</titles>
</head>

<body>
<center>

<hl>Validating User Data</hl>

<?php
Serrors = array () ;

if (isset ($_REQUEST ["welcome already displayed"])) {
check datal();

if (count ($errors) != 0){
display errors();
display welcome() ;

}

?>

</center>
</body>
</html>

In the display_errors function, we send the current error message(s) back to the browser:

<html>
<head>

Chapter 11: Validating User Input with Ajax and PHP

<titles>
Validating User Data
</title>
</head>

<body>
<center>

<hl>Validating User Data</hl>
<?php
Serrors = array();

if(isset($_REQUEST["welcome_already_displayed"])){

check datal() ;

if (count ($errors) != 0)
display errors();
display welcome () ;

}

function display errors()

{
global $errors;
foreach ($errors as $error){
echo $error, "
";
}
1
?>
</centers>
</body>

</html>

Next, in the display_welcome function, we display the welcome part of the page, which
includes the text field and the prompt to the user to enter their name. Note that the display_
welcome function also creates the hidden control named welcome_already_displayed (so we’ll

know on the server that the welcome page has already been shown).

<html>
<head>
<title>
Validating User Data
</titles>
</head>

411

412 Ajox: A Beginner's Guide

<body>
<center>

<hl>Validating User Data</hl>

<?php
Serrors = array();
if(isset($_REQUEST["welcome_already_displayed"])){

check datal() ;

if (count ($errors) != 0)
display errors();
display welcome () ;

}

function display errors()

{

global S$errors;

foreach ($errors as $error) {
echo Serror, "
";
1
1

function display welcome()
{
echo "<form method='post' action='checkdata.php'>";
echo "Please enter your name";
echo "
";
echo "<input name='name' type='text'>";
echo "
";
echo "
";
echo "<input type='submit' value='Submit'>";
echo "<input type='hidden'
name='welcome already displayed' value='data'>";
echo "</form>";

}

?>

</centers>
</body>
</html>

Chapter 11: Validating User Input with Ajax and PHP 413

On the other hand, if there were no errors, we call a function named process_data to handle
the data the user entered:

<html>
<head>
<title>
Validating User Data
</title>
</head>

<body>
<center>

<hls>Validating User Data</hl>
<?php
Serrors = array();

if (isset ($_REQUEST ["welcome already displayed"]))
check dataf() ;

if (count ($errors) != 0){
display errors() ;
display welcome () ;

}

else {
process data();

}
}

?>

</centers>
</body>
</html>

In the process_data function in this example, we just fetch the name the user entered and
display it:

<html>
<head>
<title>
Validating User Data
</title>
</head>

414 Ajox: A Beginner's Guide

<body>
<center>

<hl>Validating User Data</hl>
<?php
Serrors = array() ;

if(isset($_REQUEST["welcome_already_displayed"])){
check datal() ;

if (count ($errors) != 0)
display errors() ;
display welcome () ;

}

else {
process_datal() ;

}
}

function process data()

{
echo "Thank you. Your name is ";
echo $ REQUEST ["name"];
}
?>
</centers>
</body>

</html>

Whew. That handles the case where the welcome page has already appeared. But what if
the welcome page hasn’t already been shown (that is, if the hidden control was not found), and
we have to display the welcome page? Here’s what that looks like in code:

<html>
<head>
<title>
Validating User Data
</title>
</head>

<body>
<center>

<hl>Validating User Data</hl>
<?php
Serrors = array();

Chapter 11: Validating User Input with Ajox and PHP 415

if (isset ($_REQUEST ["welcome already displayed"])) {
check data() ;

if (count ($errors) != 0){
display errors() ;
display welcome () ;

1

else {
process_datal() ;

1

}

else {
display welcome() ;

}

?>

</centers>
</body>
</html>

That completes the code—here’s the whole thing for your reference, checkdata.php:

<html>
<head>
<title>
Validating User Data
</title>
</head>

<body>
<center>

<hl>Validating User Data</hl>

<?php
Serrors = array();
if (isset ($_REQUEST ["welcome already displayed"])) {

check_datal() ;

if (count ($errors) != 0){
display errors() ;
display welcome () ;

else {
process_datal() ;

}
}

416 Ajox: A Beginner's Guide

else {
display welcome () ;

}

function check data()

{

global S$errors;

if ($_REQUEST ["name"] == ") {
Serrors[] = "Please enter your name</fonts>";
}

}

function display errors()

{

global Serrors;

foreach (Serrors as S$Serror) {
echo Serror, "
";

}
}

function process data()

{
echo "Thank you. Your name is ";
echo $ REQUEST ["name"] ;

}

function display welcome ()
{
echo "<form method='post' action='checkdata.php'>";
echo "Please enter your name";
echo "<brs>";
echo "<input name='name' type='text's>";
echo "<brs>";
echo "
";
echo "<input type='submit' wvalue='Submit's>";
echo "<input type='hidden'
name='welcome already displayed' value='data's>";
echo "</form>";

}

?>

</centers>
</body>
</html>

Okay, but does it work? Take a look at checkdata.php in Figure 11-10.

If the user doesn’t enter their name before clicking Submit, they see the result shown in
Figure 11-11, where an error message asks them to enter their name.

If they now enter their name, say, Steve, and click Submit, that name will appear in the
results page, as you see in Figure 11-12. Not bad.

Chapter 11:

A Validating User, Data - Microsoft Internet Explorer

Validating User Input with Ajax and PHP

File Edit View Favorites Tools Help

Qiack ~ O - ¥ A 0| Poearch TrFavartes 8 | @- & W - @& @ 3

Address |

http: fflocalhostfchapter11jcheckdata, php

v| Go Links **

Validating User Data

Please enter your name

C

Figure 11-10 Displaying the welcome page

A Validating User, Data - Microsoft Internet Explorer

File Edit View Favorites Tools Help

Qback - O - ¥ A | Poearch rFavartes 8 | D- & W - L @B @ 3

Address @ http: fflocalhostfchapter 11 fcheckdata, php

Validating User Data

Please enter your name

Please enter your name

I

Figure 11-11 Displaying an error

A Validating User, Data - Microsoft Internet Explorer

File Edit Wiew Favorites

Tools Help "t"
Qiack - O - ¥ A | Poearch TrFavortes 8 | D- & W - L @ @ 3
Address @ http: fflocalhostfchapter 11 fcheckdata, php V| Go Links **

Validating User Data

Thank vou. Your name i5 Steve

Figure 11-12 Displaying the results page

417

418 Ajox: A Beginner's Guide

Validating Infegers

What if you want to validate the actual format of the entered data? For example, what if you
want to insist that a number be an integer?

Here’s a new example, checkdatainteger.php, that asks the user to enter their age, and
objects if it’s not an integer. How does it check if the data entered is an integer? The code uses
the PHP intval function to turn the entered text into an integer and then converts it back to a
string using the PHP strval function. If the result is the same as what was originally typed, then
the entered data was an integer. If not, the data wasn’t in integer form and we have to add an
error message to the $errors array:

if (strcmp ($_REQUEST ["number"],
strval (intval ($_REQUEST ["number"])))) {
Serrors[] = "Please enter an integer";

}

Here’s the whole of checkdatainteger.php, with the lines that make it different from
checkdata.php highlighted:

<html>
<head>
<title>
Validating User Data: Integers
</title>
</head>

<body>
<center>

<hl>Validating User Data: Integers</hl>

<?php
Serrors = array();

if (isset ($_REQUEST ["welcome already displayed"])) {
check data();

if (count ($errors) != 0){
display_errors() ;
display welcome () ;

}

else {
process_data() ;

}

}

else {
display welcome () ;

}

function check _data()

?>

</ce
</body
</html>

As you can see, the code is substantially the same as that for checkdata.php, indicating that
you can readily modify our PHP validation technique to check for the kinds of errors you want.

Chapter 11: Validating User Input with Ajax and PHP

global Serrors;

if ($ REQUEST ["number"] == "") {
Serrors[] = "Please enter your age";
}

if (stremp ($_REQUEST ["number"],
strval (intval ($ REQUEST ["number"])))) {
$errors[] = "Please enter an integer";
}
}

function display errors ()

{

global Serrors;

foreach (Serrors as $error){
echo Serror, "
";
1

}

function process_dataf()

{
echo "Thank you. Your age is ";
echo $ REQUEST ["number"];

}

function display welcome ()
{
echo "<form method='post' action='checkdatainteger.php'>";
echo "Please enter your age";
echo "
";
echo "<input name='number' type='text'>";
echo "
";
echo "
";
echo "<input type='submit' value='Submit'>";
echo "<input type='hidden'
name='welcome_ already displayed' value='data's>";
echo "</form>";

}

nter>
>

The checkdatainteger.php application appears in Figure 11-13.

If the
Beautiful.

data you enter is not an integer, you’ll get an error, as you see in Figure 11-14.

419

420 Ajox: A Beginner's Guide

2l Yalidating User Data: Integers - Microsoft Internet Explorer

File Edit View Favorites Tools Help
Qbxk - @ - [F @ .;b D search <7 Favorites 42 - = |&_9’—‘| LB 93
Address | http: fflocalhost fchapter1 1/checkdatainteger . php

v| Go Links **

Validating User Data: Integers

Please enter your age

Figure 11-13 Displaying the welcome page

A Validating User, Data: Integers - Microsoft Internet Explorer

File Edit View Favorites Tools Help

| !'1'.
(}Back A > | E @ .‘j ,OSearch j‘? Favorites 42 [;Jv & |-"2_9’] - (- ﬁ [] 3

Address @ http: fflocalhostfchapter1 1/checkdatainteger . php

v| Go Links **

Validating User Data: Integers

Please enter an integer

Please enter your age

Figure 11-14 Displaying an error

Validating Text

You can even check to make sure text entries are in the right format with PHP’s regular
expression checking. Regular expressions let you examine the format of text to make sure it
matches a template you supply—see http://perldoc.perl.org/perlre.html for all the details.

http://perldoc.perl.org/perlre.html

Chapter 11: Validating User Input with Ajax and PHP

Say, for example, that you want to make sure that the user enters their social security
number, which in digit terms is XxxX-xx-Xxxx. You can do that with PHP’s preg_match

function, which, using the fact that digits are represented by \d in regular expressions, would
make your validate_data function look like this:

function validate data()

{

global S$errors;

if (Ipreg match('/*\d\d\d-\d\d-\d\d\d\ds$/', $ REQUEST["data"])) {
Serrors|[] =

"Please enter a social security number" </fonts>";

}

421

This page intentionally left blank

Chapter 12

Using the HTML
DOM and Ajax

423

424 Ajox: A Beginner's Guide

Key Skills & Concepts

Introducing the DOM
Appending elements using the DOM
Replacing elements using the DOM

Handling Ajax timeouts

Web pages can be viewed as collections of objects using the HTML DOM (Document

Object Model), which gives you the power to access everything in a page. In Ajax,
knowing how to update your web pages with newly downloaded data is essential. You’ve
already seen that the basic model is to use a <div> or element and to simply replace
the contents of that element with the new data:

function getData (dataSource, diviID)
{
if (XMLHttpRequestObject) {
var obj = document.getElementById(divID) ;
XMLHttpRequestObject.open ("GET", dataSource) ;

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200)
obj.innerHTML = XMLHttpRequestObject.responseText;
}

}

Beyond the basic model, another option is to use dynamic HTML, as you saw in Chapter 8.
There, you found new ways of inserting new data into web pages, such as using the
insertAdjacentHTML method:

<html>
<head>
<title>
Updating a Page With insertAdjacentHTML
</title>

<script language="JavaScript"s>
function addHTML ()
targetDiv.insertAdjacentHTML ("AfterEnd",
"<p><input type=text value='Hello there.'> See? A new text
field.</p>");

Chapter 12: Using the HTML DOM and Ajax 425

</script>
</head>

It turns out that there are additional techniques that you can use to modify a web page
without refreshing that web page, and those techniques are wrapped up into the HTML DOM.
The DOM provides a way of looking at the contents of a web page as a collection of objects,
complete with built-in methods and properties, all available for you to use in your Ajax
applications.

Getting to Know the DOM

As mentioned, the DOM treats a web page as a collection of objects. The easiest way to
explain this is through an example, so let’s start with a likely looking HTML web page:

<html>
<head>
<title>
The Report
</title>
</head>

<body>
<hl>
All quiet on the Western front.
</hl>
</body>
<html>

This is just a plain web page with a title that will appear in the browser’s title bar and some
text that will appear in an <h1> header. But looked at in DOM terms, the elements of this
simple web page make up a collection of objects, arranged into a tree structure. Here’s what
this web page looks like in DOM terms, as a tree of nodes:

The Report All quiet on the Western front.

426 Ajox: A Beginner's Guide

JavaScript has the following built-in properties that you can use to work with the DOM
nodes in web documents like this one:

Property Description

attributes Attributes of this node
childNodes Array of child nodes
documentElement Document element
firstChild First child node
lastChild Last child node
localName Local name of the node
name Name of the node
nextSibling Next sibling node
nodeName Name of the node
nodeType Node type

nodeValue Value of the node
previousSibling Previous sibling node

These JavaScript properties are coming up in this chapter. Note the nodeType property,
which in HTML can have these values (in XML, there are nine more possible values):

1 Element
2 Attribute
3 Text node

In terms of DOM node types, here’s what our page looks like:

<html> [Element nodel]

<head> [Element node] <body> [Element node]

I I
I I
<title> [Element node] <hl> [Element nodel]
| |
| |

The Report [Text node] All quiet on the Western front. [Text node]

Chapter 12: Using the HTML DOM and Ajax 427

Besides the properties listed in the previous table, nodes support these methods in

JavaScript:
Method Description
replaceNode(a, b) Replaces node b with node a
insertBefore(a, b) Inserts node a before node b
appendChild(a) Appends a child, g, to the node that you call this method on

Okay, that’s the overview. Time to put the DOM to work.

Appending New Elements to a Web Page
Using the DOM and Ajax

The first use we’ll make of the DOM is to append new element nodes to the tree of nodes in
a web page. In other words, we’ll download data using Ajax and display that data by actually
creating a new element and appending that element to the DOM node tree that makes up the
web page.

This page starts with a button that the user can click to download data using Ajax:

<body>

<hl>Appending Elements With the DOM and Ajax</hl>

<form>
<input type = "button" value = "Download the message"
onclick = "getData()">
</form>
</body>

We also add a <div> element that we’ll insert the downloaded data into:

<body>

<hl>Appending Elements With the DOM and Ajax</hl>

<form>
<input type = "button" value = "Download the message"
onclick = "getData()">

</form>

428 Ajox: A Beginner's Guide

<div id="targetDiv" width =100 height=100>
<p id="text"></p>
</div>

</body>

When the button is clicked, we’re supposed to download and display a file, datal.txt,
which has these contents:

This text was appended using the DOM.
This download and display will take place in a function named getData:

<html>
<head>

<title>Appending Elements With the DOM and Ajax</titlex>
<script language = "javascript'"s

function getData ()

{

}

</scripts>
</head>

</ htmls
In the getData function, we start by creating an XMLHttpRequest object:
<script language = "javascript'"s
function getData ()

{

var XMLHttpRequestObject = false;
if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest() ;

} else if (window.ActiveXObject) {
XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP") ;
}

}

</scripts>

Chapter 12: Using the HTML DOM and Ajax

Then we check if that XMLHttpRequest object was in fact created:
<script language = "javascript'"s

function getData()
{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {

XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {

XMLHttpRequestObject = new ActiveXObject ("Microsoft .XMLHTTP") ;

if (XMLHttpRequestObject) {

)
}

</scripts>

If the XMLHttpRequest object exists, we can configure it to download datal.txt by
opening it:

<script language = "javascript'"s

function getData ()
{

var XMLHttpRequestObject = false;
if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP") ;

if (XMLHttpRequestObject) {

XMLHttpRequestObject.open ("GET", "datal.txt");

}
}

</scripts>

429

430 Ajax: A Beginner's Guide

And we can attach an anonymous function to the object’s onreadystatechange property to
monitor the download of the data:

<script language = "javascript'"s

function getData()

{

var XMLHttpRequestObject = false;
if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;

} else if (window.ActiveXObject) {
XMLHttpRequestObject = new ActiveXObject ("Microsoft .XMLHTTP") ;

}

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", "datal.txt");

XMLHttpRequestObject.onreadystatechange = function/()

{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
}
1
}
1
</scripts>

After we download the data from the file, datal.txt, we’ll create a new <p> element to hold
that data, and append the <p> element to the <div> element already in our web page (beneath
the button). Here’s how we use the createElement method to create a new <p> element:

<script language = "javascript'"s>

function getData()

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP") ;

}

if (XMLHttpRequestObject) {

Chapter 12: Using the HTML DOM and Ajax

XMLHttpRequestObject.open ("GET", "datal.txt");

XMLHttpRequestObject.onreadystatechange = function()

{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
var newPElement = document.createElement ("p");
}
}
}
1
</scripts>

You can’t just insert text into a <p> element, or any HTML element—you have to insert
that text into a text node first. So we begin inserting the text by creating a new text node (note
that we place the downloaded data, XMLHttpRequestObject.responseText, in the text node):

<script language = "javascript"s

function getData()

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject)
XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP") ;

}
if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", "datal.txt");

XMLHttpRequestObject .onreadystatechange = function/()
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200)
var newPElement = document.createElement ("p") ;
var newText =

document.createTextNode (XMLHt tpRequestObject.responseText) ;

431

432 Ajax: A Beginner's Guide

XMLHttpRequestObject.send (null) ;

}
}

</script>

Now we have to place the new text node into the <p> element, and we can do that with the
appendChild method this way:

<script language = "javascript"s>

function getData ()

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {

XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {

XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP") ;
}

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", "datal.txt");

XMLHttpRequestObject.onreadystatechange = function()

{

if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
var newPElement = document.createElement ("p") ;
var newText =
document .createTextNode (XMLHt tpRequestObject .responseText) ;
newPElement.appendChild (newText) ;

}
}

XMLHttpRequestObject.send (null) ;

}
}

</script>

Great, that places the downloaded data into the <p> element. The final step is to insert
the <p> element into the web page using DOM methods. We can do that by getting an object
corresponding to the target <div> element, and using the appendChild method to insert the <p>
element into the web page:

Chapter 12: Using the HTML DOM and Ajax

<script language = "javascript"s

function getData()

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {

XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject)

XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP") ;
}

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", "datal.txt");

XMLHttpRequestObject.onreadystatechange = function/()

{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
var newPElement = document.createElement ("p") ;
var newText =
document . createTextNode (XMLHttpRequestObject . responseText) ;
newPElement .appendChild (newText) ;
var divElement = document.getElementById("targetDiv");
divElement.appendChild (newPElement) ;

XMLHttpRequestObject.send (null) ;
}
}

</scripts>

Here’s the whole page, appender.html:

<htmls>
<head>

<title>Appending Elements With the DOM and Ajax</title>
<script language = "javascript"s>

function getData ()

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;

433

434 Ajax: A Beginner's Guide

} else if (window.ActiveXObject) {
XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP") ;

}

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", "datal.txt");

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
var newPElement = document.createElement ("p") ;
var newText =
document .createTextNode (XMLHt tpRequestObject .responseText) ;
newPElement .appendChild (newText) ;
var divElement = document.getElementById("targetDiv") ;
divElement .appendChild (newPElement) ;

XMLHttpRequestObject.send (null) ;

}
}

</script>
</head>

<body>

<hl>Appending Elements With the DOM and Ajax</hl>

<form>
<input type = "button" value = "Download the message"
onclick = "getData()">
</form>

<div id="targetDiv" width =100 height=100>
<p id="text"></p>
</div>

</body>

</html>

You can see how this works in Figure 12-1, in which the user clicked the download button,
the data was downloaded and inserted into a new <p> element, and the <p> element was
subsequently inserted into the page using DOM methods. Very nice.

Besides appending elements using the DOM, you can also replace them.

Chapter 12: Using the HTML DOM and Ajax

& | Appending Elements With the DOM and Ajax - Microsoft Internet Explorer

File Edit View Favorites Tools Help If.'
Qiack - © - ¥ A 0| Poearch rFavartes 8 | D- & W - L @B @ 3
Address @ http: fflocalhost fchapter 1 2/appender . html V| Go Links **

Appending Elements With the DOM and A jax

[Download the message %

Thuz text was appended using the DOIL

Figure 12-1 Appending new elements using the DOM

Replacing Elements Using the DOM

As you saw in the previous section, you can use the appendChild method to append child
nodes using the DOM. You can also replace child nodes entirely using the replaceChild
method, and we’ll take a look at how that works now, in a new example, replacer.html. This
example will have a <div> element with the ID "targetDiv":

<body>

<hl>Replacing Elements With the DOM</hl>
<div id="targetDiv" width =100 height=100>

</div>

</body>

And that’s the <div> element whose child we’ll be replacing. In order to make that happen,
we have to give it a child to start with, so let’s enclose a <p> element with the ID "text" in the

<div> element like this:
<body>

<hl>Replacing Elements With the DOM</hl>

435

436 Ajax: A Beginner's Guide

<div id="targetDiv" width =100 height=100>
<p id="text">The fetched message will appear here.</p>
</div>

</body>

So that’s the element we’ll work on replacing—the <p> element with the ID "text".

We’ll also need a button that, when clicked, will download new text using Ajax and
replace the <p> element. That new text will be in a file named replacel.txt, and here’s the
button that downloads this file:

<body>

<hl>Replacing Elements With the DOM</hl>

<form>
<input type = "button" value = "Download message 1"
onclick = "getData('l')">
</form>

<div id="targetDiv" width =100 height=100>
<p id="text">The fetched message will appear here.</p>
</div>

</body>

That is, to download the file replacel.txt, you simply have to pass "1" to the JavaScript
function getData.

Let’s add a second button to download a different file, replace2.txt. When you download
replace2.txt, the text in that file will replace the <p> element. Here’s what the second button
looks like:

<body>

<hl>Replacing Elements With the DOM</hl>

<forms>
<input type = "button" value = "Download message 1"
onclick = "getData('l')">
<input type = "button" value = "Download message 2"
onclick = "getData('2')">
</form>

<div id="targetDiv" width =100 height=100>
<p id="text">The fetched message will appear here.</p>
</div>

</body>

Chapter 12: Using the HTML DOM and Ajax 437

Okay, we’re ready to write the JavaScript to download replacel.txt and replace2.txt. Here’s
the text in replacel.txt:

This text replaced the earlier text using the DOM.

And here’s the text in replace2.txt:

This text also replaced the earlier text using the DOM.

Now it’s time to write the getData function that will do the actual downloading and replacing:

<script language = "javascript"s

function getData (number)

</scripts>

First, we’ll create a new XMLHttpRequest object:

<script language = "javascript"s>

function getData (number)

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();

} else if (window.ActiveXObject) {
XMLHttpRequestObject =

new ActiveXObject ("Microsoft.XMLHTTP") ;

}

</script>

Then we check if the XMLHttpRequest object was actually created:

<script language = "javascript'"s

function getData (number)
{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {

XMLHttpRequestObject = new XMLHttpRequest () ;

} else if (window.ActiveXObject) ({
XMLHttpRequestObject =

new ActiveXObject ("Microsoft.XMLHTTP") ;

438 Ajax: A Beginner's Guide

if (XMLHttpRequestObject) {

)
}

</scripts>

If the XMLHttpRequest object was indeed created, we can configure it to download
replacel.txt or replace2.txt, depending on whether "1" or "2" was passed to the getData
function:

<script language = "javascript'"s

function getData (number)

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) ({
XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP") ;

}

if (XMLHttpRequestObject) {

XMLHttpRequestObject.open ("GET", "replace" + number + ".txt");

}
)

</scripts>
Next, we attach an anonymous inner function to the onreadystatechange property:

<script language = "javascript'"s>

function getData (number)

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP") ;

}

Chapter 12: Using the HTML DOM and Ajax

if (XMLHttpRequestObject) {

XMLHttpRequestObject.open ("GET", "replace" + number + ".txt");
XMLHttpRequestObject.onreadystatechange = function()
}
1
</scripts>

And we can check when the download is complete with the status and readyState
properties:

<script language = "javascript'"s>

function getData (number)
{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {

XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {

XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP") ;
}

if (XMLHttpRequestObject) {

XMLHttpRequestObject.open ("GET", "replace" + number + ".txt");
XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
}
1

}
}

</scripts>

439

440 Ajax: A Beginner's Guide

Now that we’ve downloaded the new text, it’s time to create our new <p> element, which

we’ll use to replace the existing <p> element. Here’s how we use the createElement method to
create the new <p> element:

<script language = "javascript'"s

function getData (number)

var XMLHttpRequestObject = false;
if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP") ;
}
if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", "replace" + number + ".txt");
XMLHttpRequestObject.onreadystatechange = function()
if (XMLHttpRequestObject.readyState == 4 &&
XMLHt tpRequestObject.status == 200) {
var newPElement = document.createElement ("p");
}
}
</script>

Note that the current <p> element—the one about to be replaced—has an ID of "text".

We’ll also give the new <p> element the same ID so that it can be replaced in turn (by a later
button click):

<script language = "javascript'"s>

function getData (number)

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {

Chapter 12: Using the HTML DOM and Ajax

XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP") ;

}

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", "replace" + number + ".txt");

XMLHttpRequestObject.onreadystatechange = function()

{

if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
var newPElement = document.createElement ("p") ;
newPElement.setAttribute("id", "text");

}
}

</scripts>

We’ll need to place the newly downloaded text, XMLHttpRequestObject.responseText,
into its own text node before placing it in the <p> element, and we create the new text node
this way:

<script language = "javascript'"s

function getData (number)

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP") ;

}

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", "replace" + number + ".txt");

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
var newPElement = document.createElement ("p") ;
newPElement .setAttribute ("1id", "text");

441

442 Ajox: A Beginner's Guide

var newText = document.createTextNode (XMLHttpRequestObject
.responseText) ;

}
}

</scripts>
We append the new text node to the new <p> element like this:
<script language = "javascript'"s

function getData (number)

{

var XMLHttpRequestObject = false;
if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) ({
XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP") ;
}
if (XMLHttpRequestObject) {

XMLHttpRequestObject.open ("GET", "replace" + number + ".txt");

XMLHttpRequestObject.onreadystatechange = function()

{

if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
var newPElement = document.createElement ("p") ;
newPElement.setAttribute ("id", "text");
var newText = document.createTextNode (XMLHttpRequestObject
.responseText) ;

newPElement.appendChild (newText) ;

}
}

</scripts>

Chapter 12: Using the HTML DOM and Ajax

Next, we get an object corresponding to the <div> element:
<script language = "javascript'"s

function getData (number)

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {

XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {

XMLHttpRequestObject = new ActiveXObject ("Microsoft .XMLHTTP") ;

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", "replace" + number + ".txt");
XMLHttpRequestObject.onreadystatechange = function()

if (XMLHttpRequestObject.readyState == 4 &&
XMLHt tpRequestObject.status == 200) {
var newPElement = document.createElement ("p") ;
newPElement.setAttribute ("id", "text");

var newText = document.createTextNode (XMLHttpRequestObject
.responseText) ;

newPElement .appendChild (newText) ;
var divElement = document.getElementById("targetDiv") ;

}
}

</scripts>

We also get an object corresponding to the <p> element we want to replace:

<script language = "javascript'"s

function getData (number)
{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {

XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) ({

XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP") ;

443

444 Ajox: A Beginner's Guide

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", "replace" + number + ".txt");

XMLHttpRequestObject.onreadystatechange = function()

{

if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
var newPElement = document.createElement ("p") ;
newPElement .setAttribute ("1id", "text");
var newText = document.createTextNode (XMLHttpRequestObject
.responseText) ;
newPElement . appendChild (newText) ;
var divElement = document.getElementById("targetDiv") ;

var oldPElement = document.getElementById("text");

}
}

XMLHttpRequestObject.send (null) ;
}
}

</scripts>

And now we’re ready to replace the old <p> element with the new <p> element, using
replaceChild. We pass the new element and the old element, in that order, to replaceChild
this way:

<script language = "javascript'"s

function getData (number)

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) ({
XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP") ;

}
if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", "replace" + number + ".txt");
XMLHttpRequestObject.onreadystatechange = function()
if (XMLHttpRequestObject.readyState == 4 &&

XMLHttpRequestObject.status == 200) {
var newPElement = document.createElement ("p") ;

Chapter 12: Using the HTML DOM and Ajax

newPElement.setAttribute ("id", "text");
var newText = document.createTextNode (XMLHttpRequestObject
.responseText) ;

newPElement .appendChild (newText) ;

var divElement = document.getElementById("targetDiv") ;
var oldPElement = document.getElementById("text");
divElement.replaceChild (newPElement, oldPElement) ;

}
}

</scripts>
And that does the trick. All that’s left is to connect to the server using the send method:
<script language = "javascript'"s

function getData (number)

{

var XMLHttpRequestObject = false;
if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;

} else if (window.ActiveXObject) ({
XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP") ;

}

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", "replace" + number + ".txt");

XMLHttpRequestObject.onreadystatechange = function()

{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
var newPElement = document.createElement ("p") ;
newPElement.setAttribute ("id", "text");
var newText = document.createTextNode (XMLHttpRequestObject
.responseText) ;

newPElement .appendChild (newText) ;
var divElement = document.getElementById("targetDiv") ;
var oldPElement = document.getElementById("text");
divElement.replaceChild (newPElement, oldPElement) ;
}
}

XMLHttpRequestObject.send (null) ;

}
}

</scripts>

445

446 Ajax: A Beginner's Guide

Great—here’s replacer.html in full for reference:

<html>
<head>

<title>Replacing Elements With the DOM</title>
<script language = "javascript'"s
function getData (number)
{ var XMLHttpRequestObject = false;
if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;

} else if (window.ActiveXObject) ({
XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP") ;

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", "replace" + number + ".txt");

XMLHttpRequestObject.onreadystatechange = function()

{

if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
var newPElement = document.createElement ("p") ;
newPElement .setAttribute ("id", "text");
var newText = document.createTextNode (XMLHttpRequestObject
.responseText) ;
newPElement . appendChild (newText) ;
var divElement = document.getElementById("targetDiv") ;

var oldPElement = document.getElementById("text") ;
divElement.replaceChild (newPElement, oldPElement) ;

}
}

XMLHttpRequestObject.send (null) ;

}
}

</scripts>
</head>

<body>
<hl>Replacing Elements With the DOM</hl>

<form>
<input type = "button" value = "Download message 1"

Chapter 12: Using the HTML DOM and Ajax

& | Replacing Elements With the DOM - Microsoft Internet Explorer

File Edit View Favorites Tools Help

Qeiack ~ O - ¥ A (| Poearch rFavartes 8 | D- & W - L @& @ 3

Address @ http: fflocalhostfchapter 1 2freplacer . html

v|G0

Links **

Replacing Elements With the DOM

[Download message 1 % [Download message 2]

Thus text replaced the earlier text using the DOWL

Figure 12-2 Appending new elements using the DOM—first message

onclick = "getData('l')">
<input type = "button" value = "Download message 2"
onclick = "getData('2')">
</form>

<div id="targetDiv" width =100 height=100>

<p id="text">The fetched message will appear here.</p>

</div>
</body>

</html>

You can see the results in Figure 12-2—when the user clicks button 1, the first message is

downloaded and displayed.

And, as you can see in Figure 12-3, when the user clicks button 2, the second message is

downloaded and displayed.

& | Replacing Elements With the DOM - Microsoft Internet Explorer

File Edit View Favorites Tools Help

Qback ~ O - ¥ A 0| Poearch rFavartes 8 | D- & W - L @& @ 3

Address @ http: fflocalhostfchapter 1 2freplacer . html

Replacing Elements With the DOM

[Download message 1] [Download message 2 R]

Thus text also replaced the earlier text using the DO

Figure 12-3 Appending new elements using the DOM—second message

447

448 Ajax: A Beginner's Guide

Handling Timeouts in Ajax

Suppose you are all set to download a requested file or data item for the user in Ajax, but you
can’t find it. What should you do? After waiting a while for a download to occur, you should
let the user know the operation timed out. Otherwise, your Ajax application will just keep
waiting for a nonexistent resource or a broken connection.

Here’s an example, timeout.html, that shows how to time out if an Ajax operation isn’t
successful after a certain amount of time. In this case, we’ll try to download a nonexistent file,
data.txt, and then, when the operation fails, we’ll time out and display a message box to the
user. We start timeout.html with a button that the user can click to attempt to download data.txt
in a function named getData:

<body>

<Hl>Handling Ajax Timeouts</H1l>

<form>
<input type = "button" value = "Download Message"
onclick = "getData('data.txt', 'targetDiv')">
</form>
</body>

We’ll add a <div> element to display the results in:

<body>

<Hl>Handling Ajax Timeouts</H1l>

<form>
<input type = "button" value = "Download Message"
onclick = "getData('data.txt', 'targetDiv')'"s>
</form>

<div id="targetDiv">
<p>The fetched data will go here.</p>
</div>

</body>
Next, we’ll create the getData function:

<script language = "javascript'"s
function getData(dataSource, divID)
{
}

</script>

Chapter 12: Using the HTML DOM and Ajax

And we’ll need an XMLHttpRequest object:

<script language = "javascript'"s
function getData (dataSource, divID)
{
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {

XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP") ;

}

</scripts>

We’ll use the JavaScript setTimeout function to set the timeout. The idea is that if the data
hasn’t been downloaded in a second (1000 ms), we stop the download attempt and display an error
message in a message box. We start the process by configuring the XMLHttpRequest object:

<script language = "javascript'"s
function getData (dataSource, divID)

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {

XMLHttpRequestObject = new ActiveXObject ("Microsoft .XMLHTTP") ;
}

if (XMLHttpRequestObject) {

XMLHttpRequestObject.open ("GET",

dataSource) ;

}
}

</scripts>

Now we’ll attach the anonymous function that will monitor the download:

<script language = "javascript'"s>
function getData (dataSource, divID)

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {

XMLHttpRequestObject = new XMLHttpRequest () ;

} else if (window.ActiveXObject) {

449

450 Ajax: A Beginner's Guide

XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP") ;

}

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", dataSource) ;

XMLHttpRequestObject.onreadystatechange = function/()
{

}
}
</scripts>
When the download starts, the readyState property will contain a value of 1, and we want
to set our timeout clock ticking at that point, by setting the timeout. We don’t want to set the

timeout if it’s already been set (which would reset it to), so we’ll introduce a variable named
timeoutlsSet and check if the timeout has already been set, this way:

<script language = "javascript"s>
function getData(dataSource, diviID)
{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {

XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject =

}

new ActiveXObject ("Microsoft.XMLHTTP") ;

if (XMLHttpRequestObject) {

XMLHttpRequestObject.open ("GET", dataSource) ;

var timeoutIsSet = false;
XMLHttpRequestObject .onreadystatechange = function/()
{
if (XMLHttpRequestObject.readyState == 1) {
if (1timeoutIsSet) {
}
1
1

}
}

</script>

Chapter 12: Using the HTML DOM and Ajax 451

To set the timeout, we will use the setTimeout function to call another anonymous function
in 1000 ms:

<script language = "javascript'"s
function getData (dataSource, divID)

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {

XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject =

}

new ActiveXObject ("Microsoft .XMLHTTP") ;

if (XMLHttpRequestObject) {
var obj = document.getElementById(divID) ;
XMLHttpRequestObject.open ("GET", dataSource) ;

var timeoutIsSet = false;
var downloadWentOK = false;

XMLHttpRequestObject.onreadystatechange = function()

if (XMLHttpRequestObject.readyState == 1) {
if (!timeoutIsSet) {
window.setTimeout (function () {

}I
1000) ;
timeoutIsSet = true;

}
}
}
</scripts>

In the anonymous function, we will check if the download went okay by checking the
value of a variable named downloadWentOK:

<script language = "javascript'"s
function getData (dataSource, divID)

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;

452 Ajax: A Beginner's Guide

} else if (window.ActiveXObject) ({
XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP") ;
}

if (XMLHttpRequestObject) {
var obj = document.getElementById(divID) ;
XMLHttpRequestObject.open ("GET", dataSource) ;

var timeoutIsSet = false;
var downloadWentOK = false;

XMLHttpRequestObject.onreadystatechange = function()

if (XMLHttpRequestObject.readyState == 1) ({
if (!timeoutIsSet)
window.setTimeout (function () {
if (!downloadWentOK) {

}
b

1000) ;
timeoutIsSet = true;

}
}
</scripts>

And if the data was not downloaded by the time the operation timed out, we can display an
error and abort the Ajax operation with the XMLHttpRequest object’s abort method:

<script language = "javascript'"s
function getData (dataSource, divID)
{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {

XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP") ;
}

if (XMLHttpRequestObject) {
var obj = document.getElementById(divID) ;
XMLHttpRequestObject.open ("GET", dataSource) ;

var timeoutIsSet = false;
var downloadWentOK = false;

Chapter 12: Using the HTML DOM and Ajax

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 1) {
if (!timeoutIsSet) {
window.setTimeout (function () {
if (!downloadWentOK) {
alert("Sorry, but I timed out.");
XMLHttpRequestObject.abort () ;

}
b

1000) ;
timeoutIsSet = true;

}
}
</scripts>

On the other hand, if the download operation did go okay, we can display the data and set
the downloadWentOK variable to true:

<script language = "javascript'"s
function getData (dataSource, divID)
{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {

XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {

XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP") ;
}

if (XMLHttpRequestObject) {
var obj = document.getElementById(divID) ;
XMLHttpRequestObject.open ("GET", dataSource) ;

var timeoutIsSet = false;
var downloadWentOK = false;

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 1) ({
if (ltimeoutIsSet)
window.setTimeout (function () {
if (!downloadWentOK) {
alert ("Sorry, but I timed out.");
XMLHttpRequestObject .abort () ;

}
b

453

454 Ajox: A Beginner's Guide

1000) ;
timeoutIsSet = true;
1
}
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {

downloadWentOK = true;
obj.innerHTML = XMLHttpRequestObject.responseText;

}
}

XMLHttpRequestObject.send (null) ;
}
1
</scripts>

Note that at the end of the preceding code, we use the XMLHttpRequest object’s send
method to attempt to download the data. Here’s the whole example, timeout.html:

<htmls>
<head>
<title>Handling Ajax Timeouts</titles>

<script language = "javascript'"s
function getData (dataSource, divID)
{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {

XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {

XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP") ;
}

if (XMLHttpRequestObject) {
var obj = document.getElementById(divID) ;
XMLHttpRequestObject.open ("GET", dataSource) ;

var timeoutIsSet = false;
var downloadWentOK = false;

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 1) ({
if (ltimeoutIsSet)
window.setTimeout (function () {
if (!downloadWentOK) {

Chapter 12: Using the HTML DOM and Ajax

alert ("Sorry, but I timed out.");
XMLHttpRequestObject.abort () ;
1
I

1000) ;
timeoutIsSet = true;
1
}
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {

downloadWentOK = true;
obj.innerHTML = XMLHttpRequestObject.responseText;

}
}

XMLHttpRequestObject.send (null) ;
}
1
</scripts>
</head>
<body>

<Hl>Handling Ajax Timeouts</H1>

<form>
<input type = "button" value = "Download Message"
onclick = "getData('data.txt', 'targetDiv')"s>
</form>

<div id="targetDiv">
<p>The fetched data will go here.</p>
</div>

</body>
</html>

Because the file this example tries to download, data.txt, doesn’t exist, the Ajax operation
times out in this case, as you can see in the message box in Figure 12-4. Cool.

Microsoft Internet Explorer. rz|

1] E Sarry, but I timed out,
L]

Figure 12-4 Timing out in an Ajax application

455

456 Ajax: A Beginner's Guide

Downloading Images with Ajax

We’ll take a look at one last example in this chapter, showing how to download images using
Ajax. “What’s that?” you ask. “Downloading images? Can’t you download only text-based
data with Ajax?”

That’s right, you can download only text. But that text can be the name of the image
file you want to download, and if you use that image’s filename to create an HTML
element, then the browser—through the magic of dynamic HTML—will download the image
immediately, no page refresh needed.

Here’s an example, images.html, that shows this in action. First, we can add to the page
two buttons that let the user download either of two images, image 1 or image 2, as well as a
<div> element to display the new images in:

<body>

<Hl>Downloading Images With Ajax</Hl>

<form>
<input type = "button" value = "Show image 1"
onclick =
"getData ('imageNamel.txt', callback)">
<input type = "button" value = "Show image 2"
onclick =
"getData ('imageName2.txt', callback)">
</form>

<div id="targetDiv">
<p>The fetched image will appear here.</p>
</div>

</body>

Note that the getData function is being asked to download imageNamel.txt or
imageName?2.txt, which are the files that contain the name of the image to download using
dynamic HTML. Here’s what’s in imageNamel.txt:

Imagel.jpg
And here’s what’s in imageName?2.txt:

Image2.jpg

So what we’re actually downloading using Ajax is the name of the image file. After that’s
been downloaded, we can pass that name to a new function named, say, callback, to create the
new element:

<script language = "javascript"s>

function getData (imageName, callback)

Chapter 12: Using the HTML DOM and Ajax

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;
}

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", imageName) ;

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
callback (XMLHttpRequestObject.responseText) ;
delete XMLHttpRequestObject;
XMLHttpRequestObject = null;

}
}

XMLHttpRequestObject.send (null) ;

}
}

</script>

In the callback function, we use the name of the image to create a new element,
which we place in the target <div> element like this:

<script language = "javascript"s>

function getData (imageName, callback)
{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;
}

if (XMLHttpRequestObject)
XMLHttpRequestObject.open ("GET", imageName) ;

457

458 Ajax: A Beginner's Guide

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
callback (XMLHttpRequestObject .responseText) ;
delete XMLHttpRequestObject;
XMLHttpRequestObject = null;
}
}

XMLHttpRequestObject.send (null) ;

}
}

function callback (imageName)

{
document.getElementById ("targetDiv") .innerHTML =
"";
}
</scripts>

And that’s it—now we’ve downloaded the name of the image the user wants to see, and
displayed that image. Here’s the whole application, images.html:

<html>
<head>
<title>Downloading Images With Ajax</title>

<script language = "javascript"s>

function getData (imageName, callback)

{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;
}

if (XMLHttpRequestObject)
XMLHttpRequestObject.open ("GET", imageName) ;

XMLHttpRequestObject.onreadystatechange = function()

{

Chapter 12: Using the HTML DOM and Ajax 459

if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
callback (XMLHttpRequestObject .responseText) ;
delete XMLHttpRequestObject;
XMLHttpRequestObject = null;

}
}

XMLHttpRequestObject.send (null) ;

}
}

function callback (imageName)

{

document .getElementById ("targetDiv") .innerHTML =

"";
}
</scripts>
</head>
<body>

<Hl>Downloading Images With Ajax</Hl>

<form>
<input type = "button" value = "Show image 1"
onclick =
"getData ('imageNamel.txt', callback)">
<input type = "button" value = "Show image 2"
onclick =
"getData ('imageName2.txt', callback)">
</form>

<div id="targetDiv">
<p>The fetched image will appear here.</p>
</divs>

</body>
</html>

You can see the results in Figure 12-5, where the user has clicked button 1 and downloaded
image 1—no browser window refresh needed.

And in Figure 12-6, you can see how the user can download image 2 by clicking button 2.
Cool.

Of course, this was just an example—the real power of this technique becomes apparent
when the images sent from the server vary depending on the data sent to the server.

460 Ajax: A Beginner's Guide

& | Downloading Images With Ajax - Microsoft Internet Explorer.

File Edit View Favorites Tools Help

Qiack - O - ¥ A (| Poearch TrFavartes 8 | R- & W - L @ @ 3

Address @ http: fflocalhostfchapter 1 2fimages. html

v|G0

Downloading Images With A jax

[Showimage1b\d§[Show image 2]

~— W)

©

@ Done

'd Local intranet:

Figure 12-5 Downloading image 1

& | Downloading Images With Ajax - Microsoft Internet Explorer.

&3
File Edit View Favorites Tools Help {.’
Qiack - O - ¥ A (o | Poearch TrFavortes 8 | B- & W - [@ @ 3
Address @ http: fflocalhostfchapter 1 2 fimages. html V| Go Links **

Downloading Images With A jax

[Show image 1 H ShowimageZ%

ou COOQ q

(]

L™ i

L™
L™

@ Done

‘d Local intranet:

Figure 12-6 Downloading image 2

Symbols

, (comma), 349

. (dot operator), 319

; (semicolon), 22, 237

&& (And operator), 49-50, 333
& (ampersand), 83

\ (backslash), 328

$ (dollar sign), 170-171, 327

! (exclamation mark), 139

/ (forward slash), 331, 332

// (forward slashes), 23, 315

- (hyphen), 232

- (minus sign), 331, 332

Il (Or operator), 49, 50-51

+ (plus sign), 42-43, 83, 331, 332
" (quotation marks), 23, 27, 187, 326
' (quote marks), 27

(sharp sign), 239, 315-316

[] (brackets), 53, 71, 329, 333

{ } (curly braces), 29, 327, 332, 336
*/ characters, 23, 316

/* characters, 23, 316

* operator, 39, 331, 332

++ operator, 51

In

-- operator, 51
=> operator, 388

A

absolute positioning, 245-250
action attribute, 357
ActiveXObject, 67
Adaptive Path, 5
adder function, 126, 351-356
addition operators, 43
AfterBegin constant, 269
AfterEnd constant, 269
Ajax (Asynchronous JavaScript and XML)
essentials, 1-14
example, 7-9
overview, 5-7
timeouts in, 448-455
using with XML, 94-102
Ajax applications. See web applications
Ajax frameworks, 147-181
AJAXLib framework, 179-181
building library of, 148-149
described, 148

461

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

ex

462

Ajax: A Beginner's Guide

Ajax frameworks (cont.)
downloadText function, 148, 149-157
downloadXml function, 148, 157-164
libXmlRequest, 176-179
postDataDownloadText function, 148,
164-170
postDataDownloadXml function, 149,
170-176
ajax2.html document, 80-82
ajax3.html document, 85-88, 105
ajax4.html document, 89-94
ajaxframework.js script, 148—181
ajax.html document, 60-79
analyzing, 63-64
connecting to server, 78-79
creating JavaScript for, 64—-65
creating XMLHttpRequest object, 66-70
data download, 73-77
displaying fetched data, 77-78
opening XMLHttpRequest object,
70-73
overview, 16—-17, 60-62
server-side programming, 79-82
testing, 17-18
AJAXLib framework, 179-181
alert dialog box, 286-287, 290
alert function, 286-287, 290
ampersand (&), 83
And operator (&&), 49-50, 333
and.html document, 49-50
annotations. See comments
anonymous callback function, 97
anonymous function, 74-75
appendChild method, 427, 432-433, 435
appender.html document, 433-435
applications. See web applications
arguments
asyncFlag as, 71
default, 350-351
methods as, 71
passwords as, 71
in PHP, 350-351
URLs as, 71
userName as, 71
arithmetic operators, 43-46
array indexes, 330, 341
array.html document, 115-116

arrays

described, 53

$errors, 408415, 418419

form, 399-403

handling data in, 328-330

iterating over, 341

JavaScript, 53-55, 111-116

looping over, 387-390

naming elements in, 53

PHP, 328-330

$_POST, 89

$_REQUEST. See $_REQUEST array

sending data as, 374, 386

sending to server, 374, 386

$_SERVER, 396

storing data in, 399-403

using, 53-55

XMLHttpRequest objects, 111-116
arrays.php script, 328-330
askGoogleSuggest function, 127, 128-133
assignment operators, 44, 45
asterisk (*), 39, 331, 332
asyncFlag argument, 71
Asynchronous JavaScript and XML. See AJAX
asynchronous operations, 73
attentionGetter.html document, 229-235
attributes. See also specific attributes

HTML controls, 357

HTML elements, 187

names, 187

XML elements, 187, 218-222
attributes property, 426
AUTH_TYPE server variable, 392

background images, 241
background-attachment property, 241
background-color property, 231, 241
background-image property, 241
background-position property, 241
background-repeat property, 241
backgrounds

color, 231-232, 241-245

images, 241

styling with CSS, 241-245

backslash (\), 328
BeforeBegin constant, 269
BeforeEnd constant, 269
bitwise operators, 43—44
bottom property, 245
braces { }, 29, 327, 332, 336
brackets [], 53, 71, 329, 333
browser caching, 145-146
browser.html document, 5658
browsers. See web browsers
built-in lists, 355-356
bulleted lists, 100-102, 161
buttons
adding rows with, 292-296
calling getData function with, 63, 86-87,
90-94
changing background color with, 243-244
Click Here, 35-38
clicked by user, 29-38
creating with createElement, 283, 285-287
HTML, 29-38
OK, 29-33
positioning images with, 247-250
radio, 368-371
Reset, 358
sending values with, 85-87
setting stacking order with, 251-253
Submit, 358, 361-362, 372-373

C

caching, web browser, 145-146

callback function
anonymous, 97
downloading colors, 160
downloading data, 73-74
downloading images, 457458
downloading text, 152-157, 167, 169
downloading XML, 159, 172-174
getXml function, 177
Google Suggest, 133-138
libXmlRequest framework, 177-179

Cascading Style Sheets. See CSS

cells, table, 291, 293-294

chat sessions, 10-11

chckdata.php script, 407-417

Index

checkboxes, 364-368
checkbox.html document, 364-365
checkbox.php script, 366—-368
check_data function, 408—417
checkdatainteger.php script, 418-420
chess game, 14
child elements, 198, 201-206
child nodes, 211, 435-447
childNodes property, 198, 201, 426
click.html document, 27-28
color
background, 231-232, 241-245
fetching with XML, 94-102, 159-164
foreground, 232, 241
preassigned, 245
setting with CSS, 241-245
text, 229-235
color property, 231, 241
color schemes, 170-176
colors.php script, 170-172
colors.xml script, 94-102, 159-160
comma (,), 349
comments
JavaScript, 23-24
PHP, 315-317
comparison operators
JavaScript, 4445, 46
PHP, 333, 334
copyright notice, displaying, 345-349
createElement method, 282, 283-290,
430431
createElement.html document, 283-290
createRow function, 292
createTextNode method, 283
CSS (Cascading Style Sheets), 227-266
absolute positions, 245-250
drawing attention to text, 228-235
overview, 228
real-world example of, 253-266
setting colors, 241-245
setting element location, 245-250
setting element stacking order, 250-253
styling backgrounds, 241-245
styling text, 235-241
CSS properties, 231-232, 259
CSS specification, 228
curly braces { }, 29, 327, 332, 336

463

464

Ajax: A Beginner's Guide

D

data
displaying fetched data, 77-78
displaying form array data, 399—403
displaying in HTML form, 385-392
downloading. See downloading items
extracting from XML elements, 216-218
fetching from server, 16-18
handling in PHP arrays, 328-330
handling with PHP operators, 331-332

inserting into web pages, 268-272, 424-425

passing to JavaScript functions, 33—38
passing to JavaScript methods, 32
passing to PHP functions, 347-350

posting with postDataDownloadText, 148,

164-170

posting with postDataDownloadXml, 149,

170-176
reading from checkboxes, 364-368

returning from JavaScript functions, 38-39

returning from PHP functions, 351-356
sending as array, 374, 386
sending to server via GET, 82-88
sending to server via POST, 88-94
sending with URL encoding, 83
storing in arrays, 399—403
storing in variables (JavaScript), 40—42
storing in variables (PHP), 317-325
datadumper.html document, 385-387, 391
datadumper.php script, 385, 387-392
data.php script, 79-82
dataresponder.php script, 82-94, 157
data.txt file, 72
debugging, 384, 385, 387
default.php script, 350-351
deleteRow method, 297-298
desktop applications, 3—-6
Diary, Tom Riddle's, 7-9
display_welcome function, 411415
<div> element, 31-32
document element, 95, 186, 193-198
document object, 21
Document Object Model. See DOM
Document Type Definitions (DTD), 189-191,
222-226
document.bgcolor property, 21
documentElement property, 426

documentElement.html document, 193—-198
document.fgcolor property, 21
document.getElementByID method, 32
document.lastmodified property, 21
DOCUMENT_ROOT server variable, 392
documents
closed, 31
HTML, 184185
text, 22-23
writing to web browsers, 298-303
XML. See XML documents
document.title property, 21
document.write method, 21, 22, 298-303
dollar sign ($), 170-171, 327
DOM (Document Object Model)
appending new elements to pages,
427-435
basic web page, 425-427
introduction to, 424-427
replacing elements via, 435-447
using JavaScript with, 426427
DOM node tree, 425, 427
DOM nodes, 425-427
dot operator (.), 319
double.html document, 107, 110-111
do...while loops, 339
downloading items
aborting download, 452-453
with Ajax, 73-77, 427-428
anonymous functions and, 74-75
displaying error message, 452-453, 455
download state, 76
download status, 75, 77
with dynamic HTML, 12-14, 456460
handling timeouts, 448-455
images, 12-14, 456—460
JavaScript, 122-126
from other domains, 141
successful operation message, 453-454
text. See downloading text
XML, 94-102, 148, 157-164
downloading text
callback function, 152—-157, 167, 169
displaying downloaded text, 78
downloadText function, 148, 149-157
drawing user attention, 228-235
postDataDownloadText, 148, 164—170
styling with CSS, 235-241

downloadText function, 148, 149-157
downloadText.html document, 149-157
downloadXml function, 148, 157-164
downloadXml.html document, 157-164
drag-and-drop operations, 11-12, 250
drop-down list, 135-136
DTD (Document Type Definitions), 189-191,
222-226
dynamic HTML, 267-303
browser support for, 6, 279
createElement method, 282, 283-290
described, 268
document.write method, 298-303
downloading items with, 12-14, 456460
editing tables on-the-fly, 290-298
modifying HTML with, 272, 275-279
modifying text with, 272-279
removing table rows, 297-298
text ranges, 279-282
updating pages with methods, 268-272
updating pages with properties, 272-279
writing documents to browser, 298-303

e property, 255

echo function, 139-140, 309-310

echo.php script, 308

ECMA (European Computer Manufacturers

Association), 19

ECMAScript, 19

editTable.html document, 291-298

Eich, Brendan, 19

element nodes, 211, 427-435

elements. See also specific elements
child, 198, 201-206
HTML. See HTML elements
naming in arrays, 53
replacing via DOM, 435447
web page. See web page elements
XML. See XML elements

else statement, 4849

else.html document, 48—49

elseif keyword, 332-334

elseif.php script, 332-334

encoding attribute, 185, 186

Index

errors
checking for, 407, 419
displaying, 407-411, 416, 417, 419-420
reporting, 224-225
while downloading, 452-453
XML documents, 188—-189
$errors array, 408-415, 418-419
European Computer Manufacturers Association.
See ECMA
eval function, 123, 133
events, 25-28
exclamation mark (!), 139
expression checking, 420421
expressions, regular, 211, 212, 420-421
Extensible Markup Language. See XML
extensions, 23, 148, 307

F

fclose (File Close) function, 140

feof (File End of File) function, 139

fgets (File Get String) function, 139

File Close (fclose) function, 140

File End of File (feof) function, 139

File Get String (fgets) function, 139

file handles, 138-139

file handling, 138—-139

file open (fopen) function, 138-139

finding items. See searches

Firefox browser. See also web browsers
browser identification, 56, 58
displaying text in, 397, 398
downloading XML, 96
handling whitespace in, 208-210
insertAdjacentHTML and, 272
insertAdjacentText and, 272
XMLHttpRequest object and, 66—69

firstChild property, 201, 426

font-family property, 236

fonts, 236-241

font-size property, 236

font-style property, 236, 237

font-weight property, 236, 237

fopen (file open) function, 138-139

for loops, 51-53, 329, 335

foreach loops, 339-341, 388-390

465

466

Ajax: A Beginner's Guide

foreach.php script, 340-341
foreground color, 232, 241
for.html document, 51-53
form arrays, 399-403
<form> element, 30, 357-359
form letter demo, 9-10
formarrays.html document, 399400
formarrays.php script, 401-403
forms. See HTML forms
for.php script, 335
forward slash (/), 331, 332
forward slashes (//), 23, 315
frameworks. See Ajax frameworks
functions. See also specific functions
anonymous, 74-75
calling from inside functions, 211
inner, 116-121
JavaScript. See JavaScript functions
mathematical, 3846
outer, 117-118
PHP. See PHP functions
string, 323-325
functions.php script, 346-347

G

games, 14
Garrett, Jesse James, 5-6, 7
GATEWAY _INTERFACE server variable, 392
$_GET array, 84-85, 88, 363
GET method
downloading text with, 148, 149-157
downloading XML with, 148, 157-164
getData function and, 86-87
privacy and, 83
sending data to server, 82—88

sending partial search term to Google Suggest,

129-130
getAllResponseHeaders method, 142
getData function
calling with button, 63, 86-87, 90-94
downloading data, 428-433
downloading images, 456457
GET method and, 86-87
POST method and, 89-93
reading data items, 64—65
XMLHttpRequest object, 70, 107-111

getElementsByTagName method, 160-161, 216
getHours method, 299
getNamedItem method, 219
getTime function, 146
getXml function, 177
global variables, 42
Google seaches, 2-5
Google Suggest
communicating with via PHP scripts, 130
connecting to, 126—138
described, 3, 126
as desktop application, 3—5
downloading JavaScript from, 122
looping suggestions, 134—135
google.html document, 136-138
google.php script, 129-132, 138-140

H

<head> element, 20
HEAD method, 142
history object, 21
history.go method, 21
hotspots, 378
hour, determining current, 299-303
HTML
dynamic. See dynamic HTML
including in PHP files, 307-308
inserting next to existing elments, 268,
269-272, 424-425
JavaScript and, 20-23
modifying in headers, 275-278
modifying with dynamic HTML, 272,
275-279
sending to web browser via PHP, 310
HTML buttons, 29-38
HTML controls (PHP), 357-382
attributes, 357
checkboxes, 364-368
image maps, 378-382
list boxes, 372-377
radio buttons, 368-371
returning to default values, 358
sending data, 357-358
text fields, 359-363
HTML documents, 184—185. See also specific
documents

HTML DOM. See DOM (Document Object Model)
HTML elements

attributes in, 187

creating with createElement method, 283-290

empty, 187

inserting HTML next to, 268, 269-272

inserting text next to, 268, 272

predefined, 184
.html extension, 23
HTML forms

checkboxes, 364-368

displaying data in, 385-392

image maps, 378-382

list boxes, 372-377

radio buttons, 368-369

setting up, 357-359

storing data in arrays, 399—403

text fields, 127-128, 359-363
HTML header requests, 142—144
HTML headers, 142-144, 273-278
HTML tables, 290-298, 300, 308
HTTP GET method. See GET method
HTTP headers, 142—-144
HTTP POST method. See POST method
HTTP_ACCEPT server variable, 392
HTTP_ACCEPT_CHARSET server variable, 392
HTTP_ACCEPT_ENCODING server variable, 392
HTTP_ACCEPT_LANGUAGE server variable, 392
HTTP_CONNECTION server variable, 392
HTTP_HOST server variable, 392
HTTP_REFERER server variable, 393
HTTP_USER_AGENT server variable, 393, 394,

396-397

hyphen (-), 232

IANA (Internet Assigned Numbers Authority), 312
ID property, 284
ID values, 239, 243
if statement
branching with, 332-334
JavaScript, 4648
PHP, 332-334
if.html document, 4648
IIS (Internet Information Server), 1618

Index

image maps, 378-382
images
background, 241
downloading, 12-14, 456460
positioning in web pages, 246247
stacked, 250-253
images.html document, 456-460
increment operator, 135
inner functions, 116121
inner.html document, 116-121
innerHTML property, 116-121, 268, 272, 275-277
innerHTML.html document, 276
innerText property, 272, 273-275
innerText.html document, 273-275
<input> tag, 29-30
insertAdjacent.html document, 269-272
insertAdjacentHTML method, 268, 269-272,
424-425
insertAdjacentText method, 268, 272
insertBefore method, 288-289, 427
insertCell method, 293-294
insertRow method, 293, 294
integer validation, 418-420
Internet applications. See web applications
Internet Assigned Numbers Authority (IANA), 312
Internet Explorer browser. See also web browsers
browser caching and, 145
browser identification, 56, 57
displaying text in, 394-397, 398
dynamic HTML and, 279
JavaScript and, 19
text ranges in, 279-282
XMLHttpRequest object and, 67, 68
Internet Information Server (IIS), 16-18
interpolation.php script, 326-328
is_array function, 389-391
isset function, 366-367, 370-371

Java language, 19
JavaScript, 15-58
adding comments to, 23-24
arrays, 53-55, 111-116
browser support for, 23
creating for ajax.html example, 64—65

467

468 Ajax: A Beginner's Guide

JavaScript (cont.) L
downloading, 122-126
downloading from Google Suggest, 122-126 lastChild property, 201, 202, 204, 426

executing text as, 122—126 left property, 245
execution of, 22 letter.html document, 242-245
fetching data via, 6 libXmlIRequest framework, 176-179
functions. See JavaScript functions libXmIRequest.html document, 176-179
getting started with, 20-23 line-height property, 236
HTML and, 20-23 list boxes, 372-377
increment operator, 135 listbox.html document, 372-375
loops, 51-56 listbox.php script, 375-377
methods, 21, 22, 32, 427 lists
objects, 21 built-in, 355-356
online references for, 19 bulleted, 100-102, 161
operators, 42—46, 49-50 drop-down, 135-136
overview, 19 live searches, 2-5
properties, 21, 191, 192, 426 LiveScript, 19
RTF documents and, 23 loadXMLDoc function, 179
statements, 22, 4649 local variables, 42
text strings, 56 localName property, 426
using XML with, 185, 191-192 location.hostname property, 21
variables, 40—42 location.html document, 246-250
web browser type/version, 56-58 logical operators
writing to web pages from, 298-303 JavaScript, 43, 49-50
JavaScript files, 22-25 PHP, 334
JavaScript functions, 28-39 loop counter, 51, 335
adder, 126 loop index, 51, 335
alert, 286-287, 290 +++loopIndex term, 135
calling, 29-30 loopIndex value, 135
eval, 123, 133 loops
getTime, 146 for, 51-53, 329, 335
passing data to, 33-38 do...while, 339
replace, 132-133 foreach, 339-341, 388-390
returning data from, 38-39 Google Suggest, 134-135
setTimeout, 449 JavaScript, 51-56
working with, 28-33 over arrays, 388-390
javascript.html document, 20-23, 122-126 PHP. See PHP loops
javascript.php script, 122, 123, 125 while. See while loops
.js extension, 148
JScript, 19
M
K map.html document, 378-380
map.php script, 380-382
karaszewski.com, 179 marquee, scrolling, 275-276, 277
key presses, 26 <marquee> element, 394-398

keystrokes, responding to, 127-129 mathematical functions, 38—46

menu items, 253-266
menu system, 253-266
menus
displaying, 257-260
hiding, 260-261
menus.html document, 253-266
messages
displaying, 33-38, 337-338
error, 409-411, 416, 417
text stored in variables, 40-42
method attribute, 357
methods
as arguments, 71
described, 71
dynamic HTML, 268-272
JavaScript, 21, 22, 32, 427
updating pages with, 268-272
Microsoft, 19
Microsoft Internet Explorer. See Internet Explorer
Microsoft Internet Information Server (IIS), 16-18
MIME (Multipurpose Internet Mail Extensions), 312
MIME types, 312
minus sign (-), 331, 332
mouse clicks, 26
mouse events, 255-257
Mozilla browser. See also web browsers
downloading XML, 96
XMLHttpRequest object and, 67, 68, 69
multiplereturnfunctions.php script, 353-356
Multipurpose Internet Mail Extensions
(MIME), 312

N

name property, 426

named node map, 219

navigator.appName property, 21

nesting items, 188—189

Netflix top 100 video list, 12, 13

Netscape, 19

Netscape Communications Corporation, 19

Netscape Navigator, 19, 56, 66—69. See also
web browsers

nextSibling property, 201, 204, 209, 426

node types, 191, 192

nodeName property, 196, 426

Index

nodes, 201-206
child. See child nodes
DOM, 425-427
element, 211, 427-435
text, 100, 204-206, 283, 288
in XML documents, 191-192
nodeType property, 191, 426
nodeValue property, 426
number sign (#), 239, 315-316
numbers
adding in PHP, 351-353, 354
mathematical functions, 38—46
stored in variables, 41-42, 317-319

O

onabort event, 26
onblur event, 26
onchange event, 26
onclick event, 26
ondblclick event, 26
ondragdrop event, 26
onerror event, 26
onfocus event, 26
onkeydown event, 26
onkeypress event, 26
onkeyup event, 26, 127-128
onload event, 26
onmousedown event, 26, 27
onmouseout event, 26
onmouseover event, 26
onmouseup event, 26
onreadystatechange property, 166, 430, 438
onreset event, 26
onresize event, 26
onsubmit event, 26
onunload event, 26
operators. See also specific operators
addition, 43
arithmetic, 4346
assignment, 44, 45
bitwise, 43-44
comparison. See comparison operators
JavaScript, 42-46, 49-50
logical, 43, 49-50, 334
PHP, 331-334

469

470

Ajax: A Beginner's Guide

operators (cont.)
special, 45
string, 43
operators.php script, 331-332
Or operator (ll), 49, 50-51
outer functions, 117-118
outerHTML property, 272
outerHTML.html document, 277-278
outerText property, 272

page refresh, 5, 228
() parenthesis, 29
parenthesis (), 29
parselnt function, 261
parser, 224-225
party2.html document, 216222
partydtd.xml document, 222-226
party.html document, 199-207
party.xml document, 199
password, as argument, 71
PATH_TRANSLATED server variable, 393
PHP
adding comments to, 315-317
adding numbers, 351-356
advanced techniques, 343-382

assigning default values to parameters, 352

basics, 305-341

checkboxes, 366-368

dataresponder.php script, 82-94, 157
displaying data in HTML form, 385-392
displaying messages, 337-338
functions. See PHP functions

getting started with, 306-309

HTML controls. See HTML controls (PHP)

if statement, 332-334

image maps, 380-382

installing, 306

list boxes, 375-377

radio buttons, 369-371
requirements for, 17

returning multiple items, 353-356
returning text to browser, 309-314
returning variable data, 79-82
returning XML to browser, 311-314

running code, 306-308
sending HTML to browser, 310
servers running, 79-82
single-page applications, 403—406
text extensions and, 23
text fields, 362-363
validating integers, 418—420
validating text, 420-421
validating user input, 384, 407-417
variables. See PHP variables
wrapping applications into single page,
403406
PHP applications, 403—406
PHP arrays, 328-330
.php extension, 307
PHP functions
basics, 344-347
built-in lists, 355-356
count, 329
creating default arguments, 350-351
fclose, 140
feof, 139
fgets, 139
passing data to, 347-350
phpinfo, 307-308
returning data from, 351-356
PHP loops, 335-341
do...while, 339
for, 329, 335
foreach, 339-341, 388-390
while, 53-56, 139
PHP operators, 331-334
PHP scripts. See also specific scripts
accessing URLs with, 138-139
communicating with Google Suggest
via, 130
including HTML in, 307-308
sending data to server via GET, 84-85
sending data to server via POST, 88-94
PHP variables
interpolating into text strings, 326-328
server variables, 392-398
storing data in, 317-325
storing numbers in, 317-319
storing text strings in, 319-325
PHP_AUTH_PW server variable, 393
phpinfo function, 307-308

phpinfo.php script, 307-308
PHP_SELF server variable, 393
plus sign (+), 42-43, 83, 331, 332
position property, 245
$_POST array, 89
POST method
downloading text with, 148, 164-170
downloading XML with, 149, 170-176
getData function, §9-93
privacy and, 83
sending data to server, 88-94
postDataDownloadText function, 148, 164—170
postDataDownloadText.html document, 164—170
postDataDownloadXml function, 149, 170-176
postDataDownloadXml.html document, 170-176
posting data
with postDataDownloadText, 148, 164—170
with postDataDownloadXml, 149, 170-176
posting XML, 177
postXml function, 177
pound sign (#), 239, 315-316
preg_match function, 421
previousSibling property, 201, 209, 426
privacy, 83
process_data function, 413-416
properties. See also specific properties
CSS, 231-232
dynamic HTML, 272-279
JavaScript, 21, 191, 192, 426
push function, 112

Q

QUERY_STRING server variable, 393
quotation marks ("), 23, 27, 187, 326
quote marks ('), 27

R

radio buttons, 368-371
radiobutton.html document, 368-369
radiobutton.php script, 369-371
readyState property, 75, 76, 439, 450
recursion, 211

regular expressions, 211, 212, 420-421

Index

REMOTE_ADDR server variable, 393
REMOTE_HOST server variable, 393
REMOTE_PORT server variable, 393
removeChild method, 212
removeWhitespace function, 210-211
replace function, 132-133
replaceChild method, 435, 444-445
replaceNode method, 427
replacer.html document, 435447
$_REQUEST array
checking for data in, 403-404
displaying radio button data, 371
looping over, 387-390
reading data from text fields, 363
referencing data with, 366367
REQUEST_METHOD server variable, 393
REQUEST_URI server variable, 393
Reset button, 358
responder.php script, 357-358
restaurant.html document, 298-303
return statement, 352-353
returnfunctions.php script, 351-353, 354
Rich Text Format (RTF), 23, 312
Rico Ajax demo, 9-10
Rico company, 9
Riddle, Tom (Diary), 7-9
right property, 245
row index, 291
rows, table, 290, 292-298
RTF (Rich Text Format), 23, 312

S

Safari web browser, 66, 67, 69. See also web
browsers
<script> element, 20, 21, 28
SCRIPT_FILENAME server variable, 393
SCRIPT_NAME server variable, 393
scripts. See also specific scripts/HTML documents
accessing URLs with, 138-139
PHP. See PHP scripts
testing, 17-18, 85
scrolling marquee, 275-276, 277
search engines, 2-5
search term field, 127-128
search terms, 127, 129

471

472

Ajax: A Beginner's Guide

searches
Google Suggest, 129-130
live, 2-5
XML data, 216-222
XML documents, 216-222
semicolon (;), 22, 237
send method, 445
$_SERVER array, 396
server variables, 392-398
SERVER_ADMIN server variable, 393
SERVER_NAME server variable, 393
SERVER_PORT server variable, 393
SERVER_PROTOCOL server variable, 393
servers
accessing, 141
Ajax-enabled pages on, 73
anonymous functions and, 74-75
connecting to, 78-79, 445
contacting via Ajax, 141
fetching data from, 16-18
fetching text from, 73-77
Internet Information Server, 16-18
running PHP on, 79-82
sending arrays to, 374, 386
sending data to via GET, 82-88
sending data to via POST, 88-94
sending multiple requests to, 104—-106
URLs on, 73
server-side programming, 79-82, 130
SERVER_SIGNATURE server variable, 393
SERVER_SOFTWARE server variable, 393
servervariables.html document, 394-395
servervariables.php script, 394, 395-398
setTimeout function, 232, 451
sharp sign (#), 239, 315-316
show function, 122—-125
single.html document, 104—105
singlepage.php script, 403—406
spaces, URLs and, 83
special operators, 45
square brackets [|, 53, 71, 329, 333
stacking order, 250-253
standalone attribute, 185, 186
statements. See also specific statements
JavaScript, 22, 46-49
PHP, 332-334
status property, 75, 77

string functions, 323-325

string operators, 43

string.php script, 320-322

strings. See text strings

strlen function, 320, 321

strtoupper function, 320, 322

strval function, 418-419

style rules, 237

style sheets. See CSS (Cascading Style Sheets)
styles, text, 235-241

Submit button, 358, 361-362, 372-373
substr function, 320, 321
substr_replace function, 320, 321-322
Sun Microsystems, 19

T

tableObject.cells(index), 291
tableObject.deleteCell(index), 291
tableObject.deleteRow(index), 291
tableObject.insertCell(index), 291
tableObject.insertRow(index), 290
tableObject.row(index), 291
tableObject.rows(index), 290
tables, 290-298, 300, 308
tags. See elements
target attribute, 357
target property, 255
temperature.html document, 48, 49
testing scripts, 17-18, 85
text. See also text fields
centering, 236
color, 229-235
displaying for downloads, 78
displaying in browser, 394-398
downloaded. See downloading text
enclosing in XML elements, 188
entering in web pages, 285, 359-363
executing as JavaScript, 122-126
fetching from server, 73-77
flashing, 232-235
fonts, 236241
inserting next to existing elments, 268, 272
modifying with dynamic HTML, 272-279
plain, 9
replacing via DOM, 435-447

replacing with text ranges, 279-282
returning to browser (PHP), 309-314
RTF, 312
size, 236, 240-241
stored in variables, 40-42
styling with CSS, 235-241
underlining, 236, 238-239
updating in web pages, 9-10
validating, 420421
XML, 9
text documents, 22-23
text editors, 22-23
text extensions, 23
text fields
creating HTML for, 127-128, 359-362
creating PHP for, 362-363
creating with createElement, 283, 284-290
entering text into, 285, 361-362
for search terms, 127-128
using, 359-363
text nodes, 100, 204-206, 283, 288
text ranges, 279-282
text strings
interpolating PHP variables into, 326-328
JavaScript, 56
storing in PHP variables, 319-325
text-align property, 236
text-decoration property, 236, 238
textfield.html document, 359-362
textfield.php script, 362-363
textRanges.html document, 279-282
textStyles.html document, 236241
time, determining current, 299-303
timeout.html document, 448-455
timeouts, 448-455
Tom Riddle's Diary, 7-9
top property, 245
trim function, 320
.txt extension, 23

U

URL encoding, 83, 164

URLs
accessing with PHP scripts, 138—139
as arguments, 71

Index

browser caching and, 145-146
on different servers, 73
fetching, 72-73
navigating to JavaScript files via, 23
spaces and, 83
testing scripts with, 85
user input validation, 384, 407—417
userAgent property, 56
userName, as argument, 71
UTF-8 character set, 185-186

\

validateOnParse property, 224
validation

integers, 418-420

text, 420421

user input, 384, 407417

XML, 189-191, 222-226
validation.html document, 224-226
var statement, 40-42
variable.html document, 40—42
variables. See also specific variables

described, 40, 317

global, 42

JavaScript, 40-42

local, 42

PHP. See PHP variables
variables.html document, 317-318
variables.php script, 318-319
version attribute, 185

W

Web 2.0, 5
web applications, 59-102
chat, 10-11
chess game, 14
drag-and-drop, 11-12
form letter demo, 9—-10
Netflix top 100 video list, 12, 13
single-page, 403—406
Tom Riddle's Diary, 7-9
used as desktop applications, 3—6
wrapping into single PHP page, 403—406

473

Ajax: A Beginner's Guide

web browsers
caching and, 145-146
creating XMLHttpRequest objects directly,
66-70
determining type/version, 5658
displaying text in, 394-398
dynamic HTML support, 6, 279
Firefox. See Firefox browser
handling events in, 25-28
Internet Explorer. See Internet Explorer
browser
JavaScript and, 23, 56-58
live searches, 2-5
Mozilla, 67, 68, 69, 96
Netscape, 19, 56, 66
opening XMLHttpRequest objects, 70-73
returning text to, 309-314
returning XML to, 311-314
Safari, 66, 67, 69
sending HTML to, 310
text ranges and, 279, 281
welcome page, 403-417, 420
whitespace issues, 210-216
writing documents to, 298-303
XML Schema and, 190, 222
XMLHttpRequest object and, 66—73
Web interaction, 5
Web interaction designers, 5
web page elements
appending to web pages, 427-435
changing background color, 241-245
positioning, 245-253
replacing, 435-447
stacking order, 250-253
styles, 237-241
web pages
basic, 63—-64
elements in. See web page elements
entering text in, 359-363
inserting new data into, 268-272, 424-425
multiple XMLHttpRequest objects on,
104-106
page refresh, 5, 228
positioning images in, 246247
setting element location in, 245-250
updating text on, 9-10

updating with dynamic HTML, 268-279
validating user input in, 384, 407-417
welcome page, 403-417, 420
wrapping applications into single page,
403406

writing to, 298-303

web resources, modifying, 145-146

web servers. See servers

welcome page, 403-417, 420

while loops
JavaScript, 53-56
PHP, 53-56, 139, 335-338

while.html document, 53-55

while.php script, 336-338

whitefrost.com, 176

whitespace
cross-browser issues, 210-216
handling in Firefox, 208-210
removing from XML, 179-181

window object, 21

window.open method, 21

WordPad, 22-23

X

x coordinate, 381

x location, 378, 381-382

X property, 255

XML (Extensible Markup Language)
accessing data directly, 216-222
downloading with AJAX, 94-102
downloading with downloadXml, 148,

157-164
downloading with postDataDownloadXml,
149, 170-176

overview, 184—191
removing whitespace from, 179-181
returning to browser with PHP, 311-314
rules/guidelines, 184—188
using Ajax with, 94-102
using with JavaScript, 185, 191-192
validating, 189-191, 222-226

XML declaration, 94, 185-186, 311

XML Document Type Definitions (DTD), 189-191,

222-226

XML documents, 94—102
accessing data directly, 216222
creating from scratch, 185-190
declaration, 94, 185-186
document element, 95, 186, 193-198
DTDs, 189-191, 222-226
elements. See XML elements
encoding attribute, 185, 186
errors in, 188—189
example of, 185
fetching color, 94-102, 159-164
nodes in, 191-192
searching in, 216-222
standalone attribute, 185, 186
syntax rules, 189-191
validity, 189-191
version attribute, 185
vs. HTML documents, 184—185
well-formed, 188
XML Schema, 189-191, 222
XML elements
accessing, 193-207
attributes in, 187, 218-222
document, 95, 186, 193—-198
empty, 187
enclosing text in, 188
extracting data from, 216-218
names, 185, 186
nesting, 188-189

retrieving attribute data from, 218-222

Index

XML parser object, 223-224

XML Schema, 189-191, 222

XMLHttpRequest objects
arrays of, 111-116
configuring, 71-73
creating, 64, 65, 66-70
creating for data downloads, 428434
creating for individual buttons, 107-111
creating from web browser, 6670
described, 21
downloadText function, 149-153
downloadXML function, 158—-159
multiple objects in same page, 104—106
opening, 70-73
postDataDownloadText function,

164-168
xml.php script, 311-314

Y

y coordinate, 381
y location, 378, 381-382
y property, 255

z-index property, 250
z-order property, 245

475

	Copyright © 2009 by The McGraw-Hill Companies:
	 Click here for terms of use:

	Introduction:
	1 Essential Ajax:
	What Is Ajax?:
	An Example: Ajax-driven Tom Riddle€s Diary:
	Try This: Tom Riddle€s Diary:
	Updating Web Page Text with Ajax:
	Chatting in Real Time with Ajax:
	Dragging and Dropping with Ajax:
	Downloading Images with Ajax (and Dynamic HTML):
	2 Getting to Know JavaScript:
	Try This: Test ajax:
	html:

	Introducing JavaScript:
	Getting Started with JavaScript:
	Try This: Get javascript:
	html to Work:

	Adding Comments to Your Code:
	Using External JavaScript Files:
	Handling Events in the Browser:
	Try This: Get click:
	html to Work:

	Working with JavaScript Functions:
	Passing Data to Functions:
	Try This: Pass Data to Functions:
	Try This: Return Data from Functions:
	Working with Variables:
	Putting It All Together with Operators:
	Grooving with the if Statement:
	Try This: Test the if Statement:
	Using the else Statement:
	Try This: Test the else Statement:
	Working with the Logical Operators:
	Try This: Test the Or Operator:
	Over and Over with the for Loop:
	Try This: Test the for Loop:
	Keep on Looping with the while Loop:
	Which Browser Does the User Have?:
	Try This: Use browser:
	html:

	3 Creating Ajax Applications:
	Try This: Get ajax:
	html to Work:

	Taking ajax:
	html Apart:

	Creating the JavaScript:
	Creating the XMLHttpRequest Object:
	Opening the XMLHttpRequest Object:
	Getting Ready for the Data Download:
	Using the readyState Property:
	Using the status Property:
	Displaying the Fetched Data:
	Connecting to the Server:
	Adding Some Server-Side Programming:
	Try This: Get ajax2:
	html to Work:

	Sending Data to the Server Using GET:
	Sending Data with URL Encoding:
	Interacting with dataresponder:
	php:

	Sending Data to the Server Using POST:
	Writing the PHP:
	Interacting with dataresponderpost:
	php:

	Using Ajax Together with XML:
	4 Full Throttle Ajax:
	Handling Multiple XMLHttpRequest Objects in the Same Page:
	Using Two XMLHttpRequest Objects:
	Try This: Get double:
	html to Work:

	Using an Array of XMLHttpRequest Objects:
	Try This: Get array:
	html to Work:

	Using Inner Functions:
	Try This: Get Inner Functions to Work:
	Downloading JavaScript:
	Try This: Download JavaScript:
	Connecting to Google Suggest:
	Creating the Search Term Field:
	Writing the JavaScript:
	Displaying the Matches:
	Creating google:
	php:

	Downloading from Other Domains with Ajax:
	Try This: Contact Another Server Using Ajax:
	Getting More Info: HTML Header Requests and Ajax:
	Try This: Get a Specific HTML Header:
	Defeating Caching:
	5 Using Ajax Frameworks:
	Creating ajaxframework:
	js:

	Downloading Text with the downloadText Function:
	Try This: Get downloadText:
	html to Work:

	Downloading XML with the downloadXml Function:
	Try This: Get downloadXml:
	html to Work:

	Posting Data and Downloading Text with the postDataDownloadText Function:
	Posting Data and Downloading XML with the postDataDownloadXml Function:
	Using the libXmlRequest JavaScript Ajax Framework:
	Using the AJAXLib JavaScript Ajax Framework:
	6 Handling XML in Ajax:
	Building Some XML:
	Working with XML in JavaScript:
	Getting the Document Element:
	Try This: Get the Number of Children of the Document Element:
	Accessing Any XML Element:
	Try This: Find the Second Guest:
	Handling Whitespace in Firefox:
	Handling Cross-Browser Whitespace:
	Accessing XML Data Directly:
	Validating Your XML:
	7 Working with Cascading Style Sheets with Ajax:
	Drawing the User€s Attention to Downloaded Text:
	Styling Text Using CSS:
	Try This: Change the Size of Text:
	Styling Colors and Backgrounds Using CSS:
	Try This: Use Preassigned Colors:
	Setting Element Location in Web Pages:
	Try This: Adding an Additional Button:
	Setting the Stacking Order of Web Page Elements:
	A Complete Ajax CSS Example: menus:
	html:

	8 Handling Dynamic HTML with Ajax:
	Updating Pages with Dynamic HTML Methods:
	Updating Pages with Dynamic HTML Properties:
	Using Text Ranges in Internet Explorer:
	Creating New HTML Elements with createElement:
	Editing Tables On-the-Fly:
	Try This: Remove Table Rows On-the-Fly:
	Using document:
	write to Write Documents to the Browser:

	9 Introducing PHP with Ajax:
	Getting Started with PHP:
	Returning Text to the Browser:
	Try This: Send HTML to the Browser:
	Returning XML to the Browser:
	Adding Comments to Your PHP Code:
	Storing Data in Variables:
	Storing Numbers in Variables:
	Storing Text Strings in Variables:
	Interpolating Variables into Text Strings:
	Handling Data in PHP Arrays:
	Handling Data with Operators:
	Branching with the if Statement:
	Using for Loops in PHP:
	Looping with the while Loop:
	Try This: Display a Message Multiple Times:
	Looping with the do:
	while Loop:

	Looping with the foreach Loop:
	10 PHP in Depth:
	Introducing PHP Functions:
	Passing Data to Functions in PHP:
	Try This: Pass Multiple Items to a Function:
	Creating Default Arguments in Functions:
	Returning Data from Functions:
	Working with HTML Controls in PHP:
	Using Text Fields:
	Using Checkboxes:
	Using Radio Buttons:
	Using List Boxes:
	Using Image Maps:
	11 Validating User Input with Ajax and PHP:
	Displaying All the Data in an HTML Form:
	Working with PHP Server Variables:
	Creating the HTML:
	Creating the PHP:
	Getting Your Data in Array Format:
	Wrapping Applications into a Single PHP Page:
	Validating Input from the User:
	Validating Integers:
	Validating Text:
	12 Using the HTML DOM and Ajax:
	Getting to Know the DOM:
	Appending New Elements to a Web Page Using the DOM and Ajax:
	Replacing Elements Using the DOM:
	Handling Timeouts in Ajax:
	Downloading Images with Ajax:
	Index:

